Dead Sea-dwelling microbes reveal roots of protein common to all higher life forms

Jan 11, 2010 by Stu Hutson

(PhysOrg.com) -- We have more in common with Dead Sea-dwelling microbes than previously thought. University of Florida researchers have found that one of the most common proteins in complex life forms may have evolved from proteins found in microbes that live in deadly salty environments.

We have more in common with Dead Sea-dwelling than previously thought. University of Florida researchers have found that one of the most common proteins in complex life forms may have evolved from proteins found in microbes that live in deadly salty environments.

The protein ubiquitin is so-called because it is ubiquitously active in all higher life forms on Earth. The protein is essential to the life cycle of nearly all eukaryotic cells — those that are complex enough to have a nucleus and other membrane-bound structures.

Haloferax volcanii microbes, on the other hand, are unique creatures. One of the most on the planet, they long ago adapted to conditions far too salty for other organisms — even surviving for thousands of years in dried-out salt lakes.

As they report in the Jan. 7 issue of the journal Nature, researchers for UF’s Institute of Food and Agricultural Sciences have found that two proteins in Haloferax are likely the simple evolutionary precursors of ubiquitin.

These two proteins, dubbed SAMP1 and SAMP2, seem to perform similar functions to ubiquitin without some of enzymes that are needed for ubiquitin to function in eukaryotes, said Julie Maupin-Furlow, the study’s lead researcher and professor in UF’s department of microbiology and cell science.

The finding not only lends insight into how ubiquitin evolved, but it also reveals that this seemingly complex may have some simple mechanisms that can be examined for use as potential medical treatments, Maupin-Furlow said.

Researchers are currently investigating ’s role in a broad range of diseases such as cancer, , neurodegenerative disorders, muscle wasting, diabetes and various inflammatory conditions.

“This opens the door to a new avenue of study for this very important protein,” Maupin-Furlow said. “And it gives us a broader picture of some of the common aspects of life on Earth.”

Explore further: How do our muscles work? Scientists reveal important new insights into muscle protein

Related Stories

Team finds most complex protein knot ever seen

Sep 20, 2006

An MIT team has discovered the most complicated knot ever seen in a protein, and they believe it may be linked to the protein's function as a rescue agent for proteins marked for destruction.

New protein identified in bacterial arsenal

Mar 03, 2009

(PhysOrg.com) -- Nearly a billion years ago, bacteria evolved an insidious means of infecting their hosts — a syringe-like mechanism able to inject cells with stealthy hijacker molecules. These molecules, ...

When proteins change partners

Sep 11, 2009

Dieter Wolf, M.D., and colleagues at Burnham Institute for Medical Research (Burnham) have illuminated how competition between proteins enhances combinatorial diversity during ubiquitination (the process that marks proteins ...

Researchers identify a scaffold regulating protein disposal

Dec 11, 2009

How does a cell manage to identify and degrade the diverse types of defective proteins and thus protect the body against serious diseases? The researchers Sabine C. Horn, Professor Thomas Sommer, Professor Udo Heinemann and ...

Recommended for you

How calcium regulates mitochondrial carrier proteins

19 hours ago

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

20 hours ago

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.