Segregating out UbcH10's role in tumor formation

Jan 11, 2010
A single chromosome lags behind the others in a dividing cell overexpressing UbcH10. Credit: van Ree, J.H., et al. 2010. J. Cell Biol. doi:10.1083/jcb.200906147

A ubiquitin-conjugating enzyme that regulates the cell cycle promotes chromosome missegregation and tumor formation, according to van Ree et al. in the January 11 issue of the Journal of Cell Biology.

The mitotic E2 enzyme UbcH10 partners with the anaphase-promoting complex/cyclosome (APC/C) to ubiquitinate cell cycle regulators, targeting them for proteasomal destruction, and ensuring progression through mitosis. UbcH10 is overexpressed in a variety of human cancers, but whether it causes tumors or is simply up-regulated due to the increased number of proliferating cancer cells is unknown.

van Ree et al. generated mice expressing high levels of UbcH10 and found that they formed tumors in a broad range of tissues. Many of these tumors displayed aneuploidy—abnormal numbers of resulting from errors in cell division. Live microscopy showed that cells expressing high amounts of UbcH10 had problems segregating sister chromatids correctly, possibly because the cells contained extra numbers of centrosomes that might complicate formation of a normal mitotic spindle. UbcH10 overexpression also reduced levels of the mitotic regulator cyclinB—a substrate of the APC/C—though it remains to be seen if this contributes directly to centrosome amplification and aneuploidy.

The same research group recently demonstrated that chromosome segregation defects drive tumorigenesis by promoting the loss of tumor suppressor genes like . Senior author Jan van Deursen now wants to investigate whether UbcH10 synergizes with other factors to promote chromosome instability in human cancers.

Explore further: Chronic inflammation linked to 'high-grade' prostate cancer

More information: van Ree, J.H., et al. 2010. J. Cell Biol. doi:10.1083/jcb.200906147

add to favorites email to friend print save as pdf

Related Stories

Researchers prove key cancer theory

Dec 07, 2009

Mayo Clinic researchers have proven the longstanding theory that changes in the number of whole chromosomes -- called aneuploidy -- can cause cancer by eliminating tumor suppressor genes. Their findings, which appear in the ...

Researchers identify potential cancer target

Jan 16, 2009

(PhysOrg.com) -- Dartmouth Medical School researchers have found two proteins that work in concert to ensure proper chromosome segregation during cell division. Their study is in the January 2009 issue of ...

Researchers shed light on how tumor cells form

Jun 21, 2006

MIT cancer researchers have discovered a process that may explain how some tumor cells form, a discovery that could one day lead to new therapies that prevent defective cells from growing and spreading.

Recommended for you

Unraveling the 'black ribbon' around lung cancer

Apr 17, 2014

It's not uncommon these days to find a colored ribbon representing a disease. A pink ribbon is well known to signify breast cancer. But what color ribbon does one think of with lung cancer?

User comments : 0

More news stories

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...