New record in the area of prime number decomposition of cryptographically important numbers

Jan 08, 2010 by Florence Luy

An international team of scientists from EPFL (Switzerland), INRIA (France), NTT (Japan), CWI (The Netherlands) and Bonn University (Germany), has obtained the prime factors of the RSA challenge number RSA-768, using the Number Field Sieve.

The calculation took less than 2000 core years on modern CPUs.

Extrapolating the trend from previous records in this area (512-bit in 1999, 663-bit in 2005, and the current 768-bit in 2009), it is reasonable to expect that 1024-bit keys will exhibit a similar degree of vulnerability within the next decade.

The result thus underlines the importance to adopt the new cryptographic key size standards that recommend phasing out usage of currently popular 1024-bit RSA keys. However, it also indicates that, assuming similar resources, users do not incur undue risks by continued usage of 1024-bit RSA keys during the next few years of transition to higher security levels.

The software used was to a considerable extent based on a package developed in the early 2000s at the Institute at Bonn University, and further developed by the present collaborators. EPFL's Laboratory for Cryptologic Algorithms acted as main organizer, central data collection point, and contributed approximately a third to the overall computational effort.

Explore further: Christmas cracker pulling: How to send everyone home a winner

More information:
-- Paper: documents.epfl.ch/users/l/le/l… ic/papers/rsa768.txt
-- General number field sieve: en.wikipedia.org/wiki/General_number_field_sieve
-- RSA Factoring Challenge: en.wikipedia.org/wiki/RSA_Challenge

Provided by Ecole Polytechnique Fédérale de Lausanne

4.2 /5 (5 votes)
add to favorites email to friend print save as pdf

Related Stories

Fighting tomorrow's hackers

Feb 05, 2009

One of the themes of Dan Brown's The Da Vinci Code is the need to keep vital and sensitive information secure. Today, we take it for granted that most of our information is safe because it's encrypted. Every time we use a ...

Recommended for you

Decision cascades in social networks

1 hour ago

How do people in a social network behave? How are opinions, decisions and behaviors of individuals influenced by their online networks? Can the application of math help answer these questions?

Christmas cracker pulling: How to send everyone home a winner

Dec 15, 2014

According to experts' statistical analyses, if you're expecting 10 guests for dinner on Christmas day, 15 crackers—those festive cardboard tubes filled with a one-size-fits-no-one paper hat, a small toy, and a groan-inducing ...

Mathematicians prove the Umbral Moonshine Conjecture

Dec 15, 2014

Monstrous moonshine, a quirky pattern of the monster group in theoretical math, has a shadow - umbral moonshine. Mathematicians have now proved this insight, known as the Umbral Moonshine Conjecture, offering ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.