Study investigates immune system alterations in the brain

Jan 07, 2010

Using laboratory mice that had been bred to have brain changes similar to Alzheimer's disease, scientists were able to reduce two characteristic features of the disease by modifying the mice's immune systems with a special peptide (MOG45D) related to the myelin sheath that insulates nerve cells and nerve fibers. As a result, anti-inflammatory cells were recruited from the blood into the brain, dampening the local inflammatory response.

An article published online by the Journal of Neurochemistry describes the immune intervention, its cellular and molecular mechanisms of action, and the effects on disease pathology.

The study was conducted by scientists at the Maxine Dunitz Neurosurgical Institute at Cedars-Sinai Medical Center and the Weizmann Institute of Science in Rehovot, Israel. Michal Schwartz, Ph.D., the article's senior author, and Maya Koronyo-Hamaoui, Ph.D., first author, are available to provide additional details.

Schwartz is visiting professor at the Center of Neuroimmunology and Neurogenesis in the Department of Neurosurgery at Cedars-Sinai Medical Center and professor of neuroimmunology at the Weizmann Institute in Rehovot, Israel. Koronyo-Hamaoui is assistant professor and principal investigator in the Neuroimmunology Laboratory in the Department of Neurosurgery at Cedars-Sinai.

The most frequent cause of senile dementia, Alzheimer's disease is associated with the overproduction of beta-amyloid peptides - molecules that accumulate as sticky deposits in the brain. These "extra-cellular" plaques (accumulating on the exterior of neurons) damage the cells and interrupt cell-to-cell signaling. Abnormal protein tangles (neurofibrillary tangles) inside neurons also lead to cell dysfunction and death.

Researchers seek to defeat the disease in several ways: by preventing ; treating existing plaque deposits; and repairing or replacing injured neurons.

In this study, scientists modified the cellular and molecular immune environment in the brains of laboratory mice bred to model Alzheimer's disease with an altered myelin-derived peptide. This recruited anti-inflammatory cells into the brain, which diminished the effects of local and boosted the action of an enzyme that degrades plaque and is associated with glial scar formation.

Explore further: Researchers reveal pathway that contributes to Alzheimer's disease

Provided by Cedars-Sinai Medical Center

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Anti-inflammatory drug blocks brain plaques

Jun 24, 2008

Brain destruction in Alzheimer's disease is caused by the build-up of a protein called amyloid beta in the brain, which triggers damaging inflammation and the destruction of nerve cells. Scientists had previously shown that ...

Recommended for you

Neurons express 'gloss' using three perceptual parameters

10 hours ago

Japanese researchers showed monkeys a number of images representing various glosses and then they measured the responses of 39 neurons by using microelectrodes. They found that a specific population of neurons ...

Scientists show rise and fall of brain volume

13 hours ago

(Medical Xpress)—We can witness our bodies mature, then gradually grow wrinkled and weaker with age, but it is only recently that scientists have been able to track a similar progression in the nerve bundles ...

User comments : 0