Will high-density PICs be the next big thing?

Jan 05, 2010 by Margaret Allen
Gary Evans in SMU's Photonics Lab.

(PhysOrg.com) -- Lasers have the potential to improve and revolutionize human lives in many ways, from consumer electronics and communications to medical equipment and homeland security. Helping unlock the barriers to these advancements is the research of SMU Electrical Engineering Professor Gary Evans.

Evans has been recognized by his peers for his contributions to the development, design and fabrication of , microscopic manufactured devices that can amplify subatomic light particles called photons.

This technology, in turn, can lead to applications that transmit data, energy, pictures or sound.

The field of photonics already has many claims to fame: Laser pulses deliver information through glass fibers to create the ; certain wavelengths of light are used in cancer therapy; lasers read CDs and DVDs; and at industrial plants, lasers cut materials with precision.

But future development of high-power applications requires research advancements of the kind Evans is tackling in his laboratory: He is looking for a way to fit billions of lasers and other optical components atop a microscopic chip.

The challenge is similar to the one faced in the late 1950s by the engineers who developed the electronic integrated circuit. The revolutionary high-density electronic integrated circuit paved the way for powerful hand-held calculators, laptop computers and myriad microelectronic devices and technology that have transformed the world.

Evans and other researchers believe photonic integrated circuits (PICs) may have that same vast potential, but there are technical problems to resolve. One key to manufacturing high-density PICs, which can hold billions of optical devices, is an "isolator." An isolator would allow photons to flow unrestricted in the forward direction, but would prevent any reflected light from traveling backward. Without an isolator, unavoidable reflections would cause instabilities and chaos in the PIC.

"An isolator allows integration of large numbers of lasers and other optical components to produce stable, robust photonic circuits," Evans says. Since 1994 he and Jacob Hammer, a retired colleague from RCA Labs, have been working along with graduate students to develop an isolator.

"We have a good understanding of the theory and we realize what problems need to be solved to make an integrated isolator in a semiconductor," Evans says. "But more theory needs to be done to understand the materials that need to be developed. The materials just don't exist yet."

He is seeking federal funding to continue collaborations with Hammer, the University of California, Santa Barbara and the U.S. Naval Research Laboratory to develop those materials.

Explore further: Inventive thinking leads to improved optical measurements for better X-ray mirrors

add to favorites email to friend print save as pdf

Related Stories

Sandwich technique eases 3D optical chip fabrication

Nov 29, 2007

Complex three-dimensional (3D) integrated circuits involving both optical and electronic elements are now easier to make, thanks to a “wafer bonding” technique developed by a European research consortium. ...

EPIC: Building the Perfect Chip

Feb 07, 2008

Three years ago a team from Bell Labs took on a very daunting challenge – put an optical networking system on a commercially manufactured silicon chip, load it with a smorgasbord of sophisticated opto-electronic devices ...

Recommended for you

What's next for the Large Hadron Collider?

17 hours ago

The world's most powerful particle collider is waking up from a well-earned rest. After roughly two years of heavy maintenance, scientists have nearly doubled the power of the Large Hadron Collider (LHC) ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

sender
not rated yet Jan 05, 2010
Brewster prism optical grating would work great for isolators.
joekid
not rated yet Jan 06, 2010
Is there a way to change wavelength as applied to direction of the light beam? Say a 56nm going chances to a 58nm going out and so the material used to filter directionality is tuned to stop 58nm. frequency shifting has been taken advantage of in the past,why not?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.