The cancer 'TRAP'

Dec 29, 2009

Current research suggests that TNF-receptor associated protein-1 (TRAP-1) may prevent cancer cell death. The related report by Leav et al, "Cytoprotective Mitochondrial Chaperone TRAP-1 as a Novel Molecular Target in Localized and Metastatic Prostate Cancer," appears in the January 2010 issue of the American Journal of Pathology.

Prostate cancer is the most common type of cancer and is the second leading cause of cancer deaths among men in the United States, following lung cancer. most commonly develops in men over the age of 50 and is slow-growing; however, it may metastasize to other organs, particular to the bones and lymph nodes. Metastatic phase prostate cancer claims over 30,000 deaths per year in the United States alone.

are often resistant to cell death. Researchers led by Dr. Dario C. Altieri of the University of Massachusetts Medical School, therefore, explored the role of TRAP-1, a protein thought to regulate cell death, in prostate cancer survival. TRAP-1 was highly expressed in both high-grade human prostate cancer lesions and mouse models of prostate cancer, but not in benign or normal prostate tissue. In addition, TRAP-1 overexpression in non-cancer prostate cells inhibited cell death, whereas TRAP-1-deficient prostate cancer cells had enhanced levels of cell death. Moreover, treatment with Gamitrinib, which inhibits TRAP-1, resulted in prostate cancer cell death, but not death of non-cancerous . Therefore, targeting TRAP-1 via Gamitrinib treatment may be a viable therapeutic strategy for patients with advanced prostate cancer.

Leav et al suggest that "TRAP-1 [is] a novel marker of localized and metastatic prostate cancer, but not normal glands, required for prostate cancer cell viability, in vivo. Taken together with the preliminary safety of Gamitrinibs in preclinical studies, these data suggest that targeting mitochondrial TRAP-1 may provide a novel therapeutic approach for patients with advanced and metastatic prostate cancer" A similar approach may be also suitable for other types of cancer, as TRAP-1 is broadly expressed in disparate human malignancies. In future studies, Dr. Altieri and colleagues plan to "further dissect the biology of TRAP-1 cytoprotection in cancer cells, and test whether disabling its function may overcome drug resistance, the most common reason of treatment failure and dismal outcome in patients with advanced prostate cancer."

Explore further: Confronting the most aggressive, evasive, and cunning of all brain tumors

More information: Leav I, Plescia J, Goel HL, Li J, Jiang Z, Cohen RJ, Languino LR, Altieri DC: Cytoprotective Mitochondrial Chaperone TRAP-1 as a Novel Molecular Target in Localized and Metastatic Prostate Cancer. Am J Pathol 175: 393-401

add to favorites email to friend print save as pdf

Related Stories

Blocking signaling protein prevents prostate cancer spread

Jun 02, 2008

Researchers at the Kimmel Cancer Center at Jefferson in Philadelphia have shown that by blocking a signaling protein, they can prevent prostate cancer cells from metastatic dissemination. The work opens the door to future ...

New treatment hope for prostate cancer

Feb 06, 2009

Scientists at Melbourne's Burnet Institute have developed a potential new treatment for patients with prostate cancer. An article, which described the invention, has recently been published in the prestigious international ...

Recommended for you

Computer model reveals cancer's energy source

1 hour ago

(Medical Xpress)—A computer model study reveals – for the first time – details of an energy-creating process vital and unique to cancer cells. The research holds promise for new interventions and for ...

Britain to map 100,000 DNA code sequences

4 hours ago

British scientists are to map 100,000 complete DNA code sequences in a project that will make the country a world leader in genetic research on cancer and rare diseases, the prime minister said on Friday.

User comments : 0