'Notch'ing up a role in the multisystem disease tuberous sclerosis complex

Dec 28, 2009

Two independent teams of researchers have identified a role for enhanced activation of the signaling protein Notch in tumors characterized by inactivation of either the TSC1 or the TSC2 protein. As indicated by Warren Pear, at the University of Pennsylvania, Philadelphia, in an accompanying commentary, these data provide a rationale for testing whether Notch inhibitors are of benefit to those with TSC-associated tumors.

Tuberous sclerosis complex (TSC) is a multisystem disease characterized by the formation of benign tumors in multiple organs. It is caused by mutations in either the TSC1 or TSC2 gene. In the first study, Elizabeth Petri Henske, at Brigham and Women's Hospital, Boston, and Fabrice Roegiers, at Fox Chase Cancer Center, Philadelphia, found evidence of Notch signaling pathway activation in human angiomyolipomas, benign kidney tumors often found in patients with TSC, and in an angiomyolipoma-derived cell line.

Importantly, inhibition of Notch suppressed proliferation of TSC2-deficient rat cells in a xenograft model. These authors therefore conclude that TSC proteins regulate Notch activity and that Notch dysregulation may underlie some of the distinctive clinical and pathologic features of TSC.

Results presented in the second study, by Hongbing Zhang and colleagues, at the Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China, provide further evidence that TSC proteins regulate Notch activity and that Notch overactivity contributes to the tumorigenic potential of cells deficient in either TSC1 or TSC2.

Explore further: Flu season, early again, hitting hard in South and Midwest

More information: www.jci.org/articles/view/4022… 76V59G6WkmwhlzpC43Dd

Provided by Journal of Clinical Investigation

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Prenatal molecular diagnosis for tuberous sclerosis complex

Mar 02, 2009

Geneticists from Boston University School of Medicine (BUSM) have reported the world's first series of cases of prenatal diagnosis for women at risk of having a child with tuberous sclerosis complex (TSC). Earlier, the Center ...

Therapy may block expansion of breast cancer cells

Nov 05, 2008

Breast cancer stem cells are known to be involved in therapy resistance and the recurrence of cancerous tumors. A new study appearing in Clinical and Translational Science shows the mechanisms governing stem cell expansion in bre ...

Notch-ing glucose into place

Jan 27, 2008

A novel gene called rumi regulates Notch signaling by adding a glucose molecule to the part of the Notch protein that extends outside a cell, said researchers from Baylor College of Medicine in Houston and Stony Brook University ...

Recommended for you

Evidence-based recs issued for systemic care in psoriasis

12 hours ago

(HealthDay)—For appropriately selected patients with psoriasis, combining biologics with other systemic treatments, including phototherapy, oral medications, or other biologic, may result in greater efficacy ...

Bacteria in caramel apples kills at least four in US

12 hours ago

A listeria outbreak believed to originate from commercially packaged caramel apples has killed at least four people in the United States and sickened 28 people since November, officials said Friday.

Steroid-based treatment may answer needs of pediatric EoE patients

13 hours ago

A new formulation of oral budesonide suspension, a steroid-based treatment, is safe and effective in treating pediatric patients with eosinophilic esophagitis (EoE), according to a new study in Clinical Gastroenterology and Hepatology, the official clinical practice journal ...

Discovery of genes that predispose a severe form of COPD

15 hours ago

A study by Ramcés Falfán-Valencia, researcher at the National Institute of Respiratory Diseases (INER), found that the mestizo Mexican population has a number of variations in certain genes that predispose ...

On the environmental trail of food pathogens

16 hours ago

Tracking one of the deadliest food contamination organisms through produce farms and natural environments alike, Cornell microbiologists are showing how to use big datasets to predict where the next outbreak could start.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.