Adjusting acidity with impunity

Dec 22, 2009 by Wiebe van der Veen

(PhysOrg.com) -- How do individual cells or proteins react to changing pH levels? Researchers at the MESA+ Institute for Nanotechnology at the University of Twente, The Netherlands, have developed a technique for ‘gently’ adjusting pH: in other words, without damaging biomolecules. This should soon allow them to measure the activity of a single enzyme as a function of pH.

The researchers will publish their findings in the journal Lab on a Chip, which will devote a cover story to their research in the December 21st issue.

Current methods for adjusting pH often have unpredictable effects on the immediate environment of a cell or biomolecule. Electrochemical reactions may occur that affect measurements, or pH levels may not change rapidly enough. It is then difficult to determine exactly what happens when the pH changes, or the measurement itself may even produce unwanted side effects. Researcher Rogier Veenhuis and his colleagues have developed a technique which resembles traditional titration, but which is controlled electrically and takes place using extremely small volumes of solution. The greatest benefit of this technique is that there are no undesirable side effects: it is a 'gentle' approach.

Light intensity indicates pH

The researchers achieve this effect by using silicon nitride for the base of the micro and nano fluid channel, under which an electrode is attached. The electrode is given a negative charge which results in protons being attracted to the nitride surface. This causes the solution to become more basic and the pH rises. A positive charge results in the opposite effect: are released from the surface, the solution becomes more acidic and the pH decreases. There is no reaction on the as there would be during because the acts as an : this arrangement creates a kind of . Acidity can be adjusted by 'fiddling with the knob' to change the electrical current. The changes can be made visible by introducing a fluorescent pH indicator to the solution: light intensity reflects changes in pH.

This new method of titration takes place in extremely small quantities of fluid; substances can be titrated in the attomol range (10-18 mol). This should soon allow the researchers to measure the activity of a single enzyme as a function of pH.

The research was conducted by the BIOS research group of Prof. Albert van den Berg, who recently won one of the three 2009 Spinoza Prizes.

Explore further: Patented research remotely detects nitrogen-rich explosives

More information: The article 'Field-effect based attomole titrations in nanoconfinement' by Rogier Veenhuis, Egbert van der Wouden, Jan van Nieuwkasteele, Albert van den Berg and Jan Eijkel is available online and will be published as an 'inside cover' story in the December 21st edition of the journal Lab on a Chip.

add to favorites email to friend print save as pdf

Related Stories

Chip simulates metabolism of medicine in human body

Apr 24, 2009

(PhysOrg.com) -- A tiny electrochemical cell, developed by researchers of the MESA+ Institute for Nanotechnology, The Netherlands, is able to mimick the behaviour of medicine inside a human body. This chip ...

Researchers develop technique for bacteria crowd control

Apr 17, 2007

A surprising technique to concentrate, manipulate, and separate a wide class of swimming bacteria has been identified through a collaboration between researchers at Argonne National Laboratory, Illinois Institute ...

New buffer resists pH change, even as temperature drops

Jan 14, 2008

Researchers at the University of Illinois have found a simple solution to a problem that has plagued scientists for decades: the tendency of chemical buffers used to maintain the pH of laboratory samples to lose their efficacy ...

New Method Creates Nanowire Detectors Exactly Where Needed

Sep 25, 2006

There seems to be little doubt among cancer researchers that new detection systems using nanowires and microfluidics hold the promise of providing a quantum leap in the detection of cancer-related molecules and genes. However, ...

Electric Jolt Triggers Release of Biomolecules, Nanoparticles

Sep 11, 2006

Johns Hopkins researchers have devised a way to use a brief burst of electricity to release biomolecules and nanoparticles from a tiny gold launch pad. The technique could someday be used to dispense small amounts of medicine ...

Recommended for you

User comments : 0

More news stories

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.