SPARKy devices helps amputees return to normal lives (w/ Video)

Dec 22, 2009

Arizona State University researchers have developed a prosthetic device that literally puts the spring back into an amputee's step. The ASU scientists have developed and refined SPARKy (for spring ankle with regenerative kinetics) into a smart, active and energy storing below-the-knee (transbitial) prosthesis.

SPARKy is the first prosthetic device to apply regenerative kinetics to its design, which resulted in a lightweight (four pound) device that allows the wearer to walk on grass, cement and rocks, as well as ascend and descend stairs and inclines.

SPARKY operates by employing a spring to store energy as the wearer walks during normal gait, said Thomas Sugar, an ASU associate professor of engineering at the Polytechnic campus who led the research. Sugar and his colleagues -- ASU doctoral students Joseph Hitt and Matthew Holgate, as well as Barrett Honors College student Ryan Bellman -- have been developing and refining SPARKy for three years as part of a U.S. Army grant.

This video is not supported by your browser at this time.
Arizona State University researchers have developed a prosthetic device that literally puts the spring back into an amputee's step. The ASU scientists have developed and refined SPARKy (for spring ankle with regenerative kinetics) into a smart, active and energy storing below-the-knee (transbitial) prosthesis. This video includes inventor, demonstrator and students who worked on the project. Credit: Arizona State University

SPARKy uses a robotic tendon to actively stretch springs when the ankle rolls over the foot, thus allowing the springs to thrust or propel the artificial foot forward for the next step. Because energy is stored, a lightweight motor is used to adjust the position of a finely tuned spring that provides most of the power required for gait.

"SPARKY basically removes the old passive devices and makes it an active device the wearer uses to attain normal gait, which for an amputee is a significant return to normal function," Sugar said. SPARKy is not only an active , but it also allows a wider range of movement than previous devices, it weighs less and it causes less fatigue for the wearer.

SPARKy provides functionality with enhanced ankle motion and push-off power comparable to the gait of an able bodied individual. Sugar said the device reached its primary goal of returning the functionality of the to his/her status prior to losing a limb.

The device is built to take advantage of the functional mechanics of gait. A cycle is the natural motion of walking, starting with the heel strike of one foot and ending with the heel strike of the same foot.

"The cycle can be split into two phases, stance and swing," Sugar said. "We are concerned with storing energy and releasing energy (regenerative kinetics) in the stance phase."

The mechanics of walking can be described as catching a series of falls, Sugar added. In SPARKy, a tuned spring (acting like the Achilles tendon) breaks the fall and stores energy as the leg rolls over the ankle during the stance phase.

While the project is nearing completion of its three year grant, there still is much more work to do to refine the device.

To date, SPARKy has allowed users to walk on inclines, steps and to walk backwards, not trivial tasks for people who have only had access to passive, and sometimes cumbersome, prosthetics. In the future, the team plans to make additional improvements to lower the weight of SPARKy by integrating very fast microprocessors and using the smallest lithium ion batteries.

"We want our finished device to allow soldiers to return to active duty," Sugar said.

Explore further: Irish court mulls rights of dead woman vs. fetus

add to favorites email to friend print save as pdf

Related Stories

Toad research could leapfrog to new muscle model

Jun 02, 2008

A toad sits at a pond's edge eyeing a cricket on a blade of grass. In the blink of an eye, the toad snares the insect with its tongue. This deceptively simple, remarkably fast feeding action offers a new look ...

The spring in your step is more than just a good mood

Apr 23, 2008

Scientists using a bionic boot found that during walking, the ankle does about three times the work for the same amount of energy compared to isolated muscles---in other words, the spring in your step is very real and helps ...

Robotic exoskeleton replaces muscle work

Feb 08, 2007

A robotic exoskeleton controlled by the wearer's own nervous system could help users regain limb function, which is encouraging news for people with partial nervous system impairment, say University of Michigan researchers.

Sports technology for para-athletes: Closing the gap

Jan 30, 2009

This issue of Sports Technology, published by Wiley-Blackwell, spotlights recent developments that seek to close the gap between able-bodied athletes and para-athletes, with two published articles highlighting running prosth ...

Recommended for you

Irish court mulls rights of dead woman vs. fetus

10 hours ago

A lawyer representing a 17-week-old fetus living inside the clinically dead body of its mother told a Dublin court Wednesday that the unborn child's right to life trumps the woman's right to a dignified death.

Trends in indoor tanning among high school students

Dec 23, 2014

While indoor tanning has decreased among high school students, about 20 percent of females engaged in indoor tanning at least once during 2013 and about 10 percent of girls frequently engaged in the practice by using an indoor ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.