Microcephaly genes associated with human brain size

Dec 21, 2009

A group of Norwegian and American researchers have shown that common variations in genes associated with microcephaly - a neuro-developmental disorder in which brain size is dramatically reduced - may explain differences in brain size in healthy individuals as well as in patients with neurological and psychiatric disorders.

The study, which involved collaboration between researchers from the University of Oslo, the University of California, San Diego and Scripps Translational Science Institute in La Jolla, California, will be published on line the week of December 21 in the Proceedings of the National Academy of Science.

In relation to body size, brain size has expanded dramatically throughout primate and human evolution. In fact, in proportion to body size, the brain of modern humans is three times larger than that of non-human primates. The in particular has undergone a dramatic increase in surface area during the course of primate evolution.

The microcephaly genes have been hot candidates for a role in the evolutionary expansion of the human brain because mutations in these genes can reduce brain size by about two-thirds, to a size roughly comparable to our early hominid ancestors. There is also evidence that four of the genes - MCPH1, ASPM, CDK5RAP2 and CENPJ - have evolved rapidly and have been subject to strong selective pressure in recent human evolution.

"It is obvious that such anatomical changes must have a basis in genetic alterations, said Lars M. Rimol, a research fellow at the University of Oslo. "Until now, little has been known about the molecular processes involved in this evolution and their . Now we have a piece of that genetic puzzle."

Several previous MRI studies have attempted to demonstrate a link between single polymorphisms (an inherited that is found in more than one percent of the population) in these genes and brain size in healthy human adults, all of them unsuccessful. According to the research team, the success of the current study is likely due to two unique characteristics: first, by using a whole genome scan, the scientists could access an unprecedented number of polymorphisms, including non-coding regions outside of the gene itself; second, they were able to estimate cortical surface area, using software that reconstructs the cortical surface, based on volumetric MR scans, allowing for highly precise measurements of cortical thickness and areal expansion.

The software was developed by Anders Dale, PhD, professor of Radiology and Neurosciences at the UC San Diego School of Medicine, who headed the American branch of the research team. "The most statistically significant associations were consistently found with the areal expansion measure, which has implications also for future studies," said Dale.

The initial discovery was made in a sample of 289 psychiatric patients and controls from the Norwegian Thematically Organized Psychosis research project (TOP), led by Ole Andreassen from the University of Oslo, principal investigator of the Norwegian branch of the international research team. The most significant findings were then replicated in a sample of 655 healthy and demented patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the largest Alzheimer's disease study ever funded by the National Institutes of Health. The Norwegian sample was ethnically homogenous; the ADNI sample was ethnically diverse. According to the researchers, the fact that reported associations were found across two independent studies, including healthy controls and various patient groups, shows that these effects are likely to be independent of population or disease.

Highly significant associations were found between cortical surface area and polymorphisms in possible regulatory regions near the gene CDK5RAP2. This gene codes for a protein involved in cell-cycle regulation in neuronal progenitor cells - cells that migrate to the cerebral cortex during the second trimester of gestation and eventually become fully functioning neurons. The cerebral cortex is the outer layer of the brain, often referred to as "gray matter." The most highly developed part of the human brain, the cerebral cortex is responsible for higher cognitive functions, such as thinking, perceiving, producing and understanding language, some of which is considered uniquely human.

Similar but less significant findings were made for polymorphisms in two other microcephaly genes, known as MCPH1 and ASPM. All findings were exclusive to either males or females but the functional significance of this sex-segregated effect is unclear.

"One particularly interesting feature of this new discovery is that the strongest links with cortical area were found in regulatory regions, rather than coding regions of the genes," said Andreassen. "One upshot of this may be that in order to further understand the molecular and evolutionary processes that have determined human , we need to focus on regulatory processes rather than further functional characterization of the proteins of these genes. This has huge implications for future research on the link between genetics and morphology."

Explore further: First genetic link discovered to difficult-to-diagnose breast cancer sub-type

add to favorites email to friend print save as pdf

Related Stories

The beginnings of the thinking brain

Jun 28, 2006

Oxford researchers have identified the very first neurons in the human cerebral cortex, the part of the brain that sets us apart from all other animals.

Recommended for you

Refining the language for chromosomes

Apr 17, 2014

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in ...

Down's chromosome cause genome-wide disruption

Apr 16, 2014

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
not rated yet Dec 21, 2009
And the link between genetics and intelligence?

More news stories

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Study says we're over the hill at 24

(Medical Xpress)—It's a hard pill to swallow, but if you're over 24 years of age you've already reached your peak in terms of your cognitive motor performance, according to a new Simon Fraser University study.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.