How the daisy got its spots... and why

Dec 18, 2009
This is the Nieuw morphotype of Gorteria diffusa, which exhibits striking dark petal spots at the bases of some ray florets. Scale bar = 1 cm. Credit: Courtesy Meredith Murphy Thomas.

Dark spots on flower petals are common across many angiosperm plant families and occur on flowers such as some lilies, orchids, and daisies. Much research has been done on the physiological and behavioral mechanisms for how these spots attract pollinators. But have you ever wondered what these spots are composed of, how they develop, or how they only appear on some but not all of the ray florets?

Dr. Meredith Thomas from the University of Cambridge and associates from England and South Africa were interested in exploring these questions and published their findings in the December issue of the . They focused on the South African endemic beetle daisy Gorteria diffusa (Asteraceae), which has a unique, raised, dark spot at the base of some of its ray florets.

"I find this plant/pollinator system very exciting to study because of the amazing morphological variation in the flowers between populations," Thomas said. "The spots on the flowers mimic the plant's pollinator, a small fly, which is attracted to the plant because of the spots. The plant is dependent on the pollinator for , so it's incredibly important that the plant attracts the flies.

"What we found surprising," Thomas continued, "was how complex the petal spots are in a few populations, when other populations seem to get by with a very simple spot or even no petal spot at all."

By peeling away layers of the tissues that make up the spots on mature ray florets and examining them under a simple dissecting scope, Thomas and associates found that the spots of G. diffusa are more complex than most. These spots are composed of three different types of specialized epidermal cells: the central highlight cells that reflect UV and lack pigment; the interior cells that are shorter, rounder, variously pigmented, and raised above the highlight cells; and, surrounding the spot, a circle of multicellular papillae that are swollen, shiny, and filled with anthocyanin. Moreover, each spot spans four congenitally fused petal lobes, meaning that each lobe contained only part of the spot (and only some cell types) in its genetic makeup.

So what attracts the pollinators? Because there is a lot of spot variation in this species, the authors hypothesize that the elements that are found in common among the various populations, such as the presence of anthocyanin pigment or UV reflectivity, might do the trick.

The authors also wanted to know how only a subset of the floral rays develops a spot. Using scanning electron microscopy the authors looked at how the spot developed, or its ontogeny, over time. They found that only the first few ray florets that develop contain the spots, whereas the rest do not. Thomas noted that "the plant has evolved a very clever way of distributing the pollinator-mimicking spots around the inflorescence so that they appear random, as if a few flies had just landed on the inflorescence, when in fact the position of the spots is mathematically pre-determined according to the plant's phyllotaxy [or the order and location in which new floral organs are initiated]." The authors hypothesize that the genes that control the appearance of the spot are turned on initially and then fade with time, such that only the first, and oldest, rays to develop have the spots. Thus, the development of the spots is complex not only at the cellular level, but at the organismal level as well.

"What we now plan to investigate," concludes Thomas, "is whether the development of this adaptive floral trait is regulated by a similarly complex genetic regulatory pathway, or if this plant has simply co-opted and modified a pathway commonly used in plants to produce other types of specialized surface structures, like hairs."

Explore further: 'Killer sperm' prevents mating between worm species

More information: http://www.amjbot.org/cgi/content/full/96/12/2184

Provided by American Journal of Botany

4.5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Study looks at fruit fly sexual attraction

Apr 19, 2006

U.S. scientists with the Howard Hughes Medical Institute say in the frantic world of the fruit fly, courtship may depend on having the right wing spots.

Chinese takeaway in the Wadden Sea

Sep 25, 2007

Shore crabs catch their food at food-rich spots and subsequently eat it elsewhere. With this takeaway strategy the crabs maximize their food uptake and keep competing crabs at a distance, says Dutch researcher Isabel Smallegange.

The Sun Loses its Spots

Jul 24, 2007

While sidewalks crackle in the summer heat, NASA scientists are keeping a close eye on the sun. It is almost spotless, a sign that the Sun may have reached solar minimum. Scientists are now watching for the ...

Probing Question: Why are flowers beautiful?

Jan 24, 2008

In the 1930s, American artist Georgia O'Keefe wrote: "What is my experience of the flower if it is not color?" O'Keefe is best known for her vibrantly colorful close-ups of petals and stamens on large canvases.

Recommended for you

'Killer sperm' prevents mating between worm species

13 hours ago

The classic definition of a biological species is the ability to breed within its group, and the inability to breed outside it. For instance, breeding a horse and a donkey may result in a live mule offspring, ...

Rare Sri Lankan leopards born in French zoo

16 hours ago

Two rare Sri Lankan leopard cubs have been born in a zoo in northern France, a boost for a sub-species that numbers only about 700 in the wild, the head of the facility said Tuesday.

Researcher reveals how amphibians crossed continents

18 hours ago

There are more than 7,000 known species of amphibians that can be found in nearly every type of ecosystem on six continents. But there have been few attempts to understand exactly when and how frogs, toads, ...

User comments : 0