Mutation leads to new and severe form of bacterial disease

Dec 18, 2009

(PhysOrg.com) -- Everybody gets sick, but how sick you get is in your genes. New research now reveals a mutation on a gene that makes children susceptible to a severe form of mycobacterial disease. The work not only supports a controversial idea that certain genes evolved to combat specific bacteria but also reveals new mechanistic details of how the immune system fights off one of the planet’s fiercest pathogens.

Led by Jean-Laurent Casanova, head of the Laboratory of of , the work lends further support not only to the controversial idea that an error in a single gene is enough to dramatically alter an individual’s risk for , but also to the notion that humans have sets of genes that are pathogen-specific.

“It’s incredible,” says Stephanie Boisson-Dupuis, a research associate in the lab. “In the past 10 years, the way that we think about the genetics of infectious disease has been redefined. Instead of just targeting the , we can now also target the immune system, and try to patch the holes that allow the bacteria to slip through.”

The mutation disrupts a gene known as IFN-γR1, which is charged with making a receptor for interferon γ, a molecule that directs immune cells to organize an attack. When the receptor is absent or rejects the molecule, it disrupts an immune system pathway that specifically targets mycobacteria.

Across 32 countries, 33 different on IFN-γR1 have been identified in 118 patients, who have either a complete or partial deficiency of IFN-γR1 and are severely susceptible to mycobacterial disease. Casanova’s team reports on a new form of partial IFN-γR1 deficiency with particularly severe consequences. “The severity of the disease depends on the severity of the deficiency,” says Boisson-Dupuis. “In this case, the deficiency is almost as severe as complete deficiency, leading to a dramatic increase in the severity of the mycobacterial disease.”

Casanova, Boisson-Dupuis and postdoc Xiao-Fei Kong discovered the mutation in a young patient who had developed mycobacterial disease after receiving the BCG vaccine for tuberculosis. Suspecting that IFN-γR1 was involved, the team began sequencing the gene not only in the patient, but in her healthy parents and sibling. The tests revealed that each parent had one copy of the mutation located on a stretch of DNA where transcription begins — the initiation codon. But the patient inherited both copies of the gene, severely compromising her immune system’s response to .

Further investigation pointed to a never before known transcriptional mechanism of the immune system pathway. Because the mutation affects the first methionine (thus, the translation of the initiation codon) the team did not expect to see the interferon γ receptor expressed, but they did, albeit in dramatically reduced amounts on manipulated cells from the patient, suggesting that there was a second stretch of DNA from which the receptor could be transcribed. But that wasn’t the only surprise. Some cells translate and express the receptor while others do not, even though all cells have the same mutation.

“It is the first time we have seen such a finding for this immune system pathway,” says Boisson-Dupuis. “Understanding the basis of this finding should make it possible to devise ways to make the succeed so that perhaps one day, a genetic legacy will no longer write a family’s history.”

Explore further: NIH issues finalized policy on genomic data sharing

More information: Human Molecular Genetics online: November 16, 2009, A novel form of cell type-specific partial IFN-γR1 deficiency caused by a germ line mutation of the IFNGR1 initiation codon, Xiao-Fei Kong. hmg.oxfordjournals.org/cgi/con… nt/abstract/ddp507v2

add to favorites email to friend print save as pdf

Related Stories

Clinical study to probe genetic link to Salmonella diseases

Oct 01, 2009

(PhysOrg.com) -- Depending on your genes, Salmonella can mean a lot more than food poisoning. In a new clinical study, researchers at The Rockefeller University Hospital are narrowing in on the genetic link that predisposes ...

Toward an explanation for Crohn's disease?

Jul 09, 2009

Twenty-five per cent of Crohn's disease patients have a mutation in what is called the NOD2 gene, but it is not precisely known how this mutation influences the disease. The latest study by Dr. Marcel Behr, of the Research ...

Stem cells could halt osteoporosis, promote bone growth

Mar 04, 2009

While interferon gamma sounds like an outer space weapon, it's actually a hormone produced by our own bodies, and it holds great promise to repair bones affected by osteoporosis. In a new study published in the journal Stem Ce ...

Recommended for you

NIH issues finalized policy on genomic data sharing

10 hours ago

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

16 hours ago

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

Cancer leaves a common fingerprint on DNA

Aug 25, 2014

Regardless of their stage or type, cancers appear to share a telltale signature of widespread changes to the so-called epigenome, according to a team of researchers. In a study published online in Genome Me ...

User comments : 0