Privacy concerns could limit benefits from real-time data analysis, researcher says

Dec 17, 2009

Society will be unable to take full advantage of real-time data analysis technologies that might improve health, reduce traffic congestion and give scientists new insights into human behavior until it resolves questions about how much of a person's life can be observed and by whom, a Carnegie Mellon University computer scientist contends in a commentary published Friday in the journal Science.

In a "Perspectives" column, Tom M. Mitchell, head of the Machine Learning Department in Carnegie Mellon's School of Computer Science, notes that data-mining techniques, once used for scientific analysis or for detecting potential credit card fraud, increasingly are being applied to personal activities, conversations and movements, such as information that can be deduced about an individual by monitoring that person's smart phone.

"The potential benefits of mining such data range from reducing and pollution, to limiting the spread of disease, to better using public resources such as parks, buses, and ambulance services," Mitchell wrote. "But risks to privacy from aggregating these data are on a scale that humans have never before faced."

Technical means can help limit threats to privacy and misuse of data, Mitchell said. One approach is to mine data from many different organizations without ever aggregating the data into a central repository. For instance, individual hospitals might analyze their medical records to see which treatments work best for a particular , then use cryptography to encode the results and protect patient privacy; only then would the findings be combined with those from thousands of other hospitals.

"Perhaps even more important than technical approaches will be a public discussion about how to rewrite the rules of data collection, ownership, and privacy to deal with this sea change in how much of our lives can be observed, and by whom," Mitchell wrote. "Until these issues are resolved, they are likely to be the limiting factor in realizing the potential of these new data to advance our scientific understanding of society and human behavior, and to improve our daily lives."

Mitchell pointed out that the use of real-time data from individuals already has begun. In many cities, anonymous location data from is being used to provide up-to-the-minute reports of traffic congestion. Researchers have shown that by analyzing health-related Google queries from particular geographic areas, they can estimate the level of flu-like illnesses in regions of the U.S. before government agencies such as the Centers for Disease Control and Prevention can provide estimates. Scientists are beginning to use real-time sensing of routine behavior to study interpersonal interactions as people go about their daily lives.

Combining data sets could open up many new possibilities, as well as new issues, Mitchell said. "For example, if your phone company and local medical center integrated GPS phone data with up-to-the-minute medical records, they could provide a new kind of medical service using phone GPS data to detect that you have recently been near a person who is just now being diagnosed with a contagious disease — then automatically phoning to warn you."

A former president of the Association for the Advancement of (AAAI), Mitchell is a member of an AAAI panel that is exploring the potential societal impacts of advances in artificial intelligence. A pioneer in artificial intelligence and machine learning, Mitchell was named a University Professor, the highest distinction that faculty can achieve at Carnegie Mellon, in May 2009. He has been head of the Machine Learning Department since the first-of-its-kind department was established in 2006. His research focuses on statistical learning algorithms for understanding natural language text and on understanding how the human brain represents information.

Explore further: MIT groups develop smartphone system THAW that allows for direct interaction between devices

add to favorites email to friend print save as pdf

Related Stories

Can You Read My Mind?

Mar 23, 2005

The W.M. Keck Foundation has awarded Carnegie Mellon University a $750,000 grant to support research into how the human brain deciphers language, which could one day yield advances in the treatment of neurological disorders ...

A computer that can 'read' your mind

Jun 02, 2008

For centuries, the concept of mind readers was strictly the domain of folklore and science fiction. But according to new research published today in the journal Science, scientists are closer to knowing how sp ...

Computer model reveals how brain represents meaning

May 29, 2008

Scientists at Carnegie Mellon University have taken an important step toward understanding how the human brain codes the meanings of words by creating the first computational model that can predict the unique ...

Recommended for you

Who drives Alibaba's Taobao traffic—buyers or sellers?

Sep 18, 2014

As Chinese e-commerce firm Alibaba prepares for what could be the biggest IPO in history, University of Michigan professor Puneet Manchanda dug into its Taobao website data to help solve a lingering chicken-and-egg question.

Computerized emotion detector

Sep 16, 2014

Face recognition software measures various parameters in a mug shot, such as the distance between the person's eyes, the height from lip to top of their nose and various other metrics and then compares it with photos of people ...

Cutting the cloud computing carbon cost

Sep 12, 2014

Cloud computing involves displacing data storage and processing from the user's computer on to remote servers. It can provide users with more storage space and computing power that they can then access from anywhere in the ...

Teaching computers the nuances of human conversation

Sep 12, 2014

Computer scientists have successfully developed programs to recognize spoken language, as in automated phone systems that respond to voice prompts and voice-activated assistants like Apple's Siri.

User comments : 0