MO-SCI to manufacture SRNL's unique porous walled hollow glass microspheres

Dec 17, 2009

A licensing agreement between the U.S. Department of Energy's Savannah River National Laboratory (SRNL) and specialty glass provider Mo-Sci Corporation will make SRNL's unique Porous Walled Hollow Glass Microspheres available for use in targeted drug delivery, hydrogen storage and other uses, including applications still being developed.

Hollow glass microspheres have been used for years in light-weight filler material, insulation, abrasives and other uses. What makes SRNL's patent-pending microspheres unique is the network of interconnected pores in the microsphere walls, which allow the tiny "microballoons" to be filled with, hold, and release gases and other materials. Each porous walled hollow glass microsphere is about 50 microns in diameter, about half the width of a human hair. Its walls, which are about 10,000 angstroms thick (an angstrom is one-tenth of one-billionth of a meter) feature pores that range from 100 to 300 angstroms, which allow gases to enter the tiny spheres and be stored or cycled on absorbents inside.

SRNL originally developed the unique microspheres as a solid-state storage method for hydrogen; they have been successfully demonstrated to store and release the gas.

Work since then has shown potential in other uses, including battery applications and medicine. An article by authors from the Medical College of Georgia and SRNL, which has been accepted for publication in the peer-reviewed journal : , Biology and Medicine, discusses a possible application for the delivery of anti-cancer drugs. (Porous-wall hollow glass microspheres as novel potential nanocarriers for biomedical applications; Shuyi Li, Lynsa Nguyen, Hairong Xiong, Meiyao Wang, Tom C.-C. Hu, Jin-Xiong She, Steven M. Serkiz, George G. Wicks, William S. Dynan; article in press)

Under the license agreement, Mo-Sci will provide SRNL with a cost-effective supply of the microspheres to continue research and development of additional applications. It also provides for aggressive marketing by Mo-Sci to be the premier supplier for medical R&D applications.

Explore further: Demystifying nanocrystal solar cells

Provided by Savannah River National Laboratory

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Bone research that grows on you

Oct 31, 2006

Rapid and guided healing of bones has moved a step closer with research by two biomedical engineering students who have found new ways to deliver bone growth enhancers directly to broken or weakened bones.

MIT's 'electronic nose' could detect hazards

Oct 31, 2007

A tiny "electronic nose" that MIT researchers have engineered with a novel inkjet printing method could be used to detect hazards including carbon monoxide, harmful industrial solvents and explosives.

Recommended for you

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.