Stem-cell activators switch function, repress mature cells

Dec 16, 2009

In a developing animal, stem cells proliferate and differentiate to form the organs needed for life. A new study shows how a crucial step in this process happens and how a reversal of that step contributes to cancer.

The study, led by researchers at the Ohio State University Comprehensive Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, shows for the first time that three proteins, called E2f1, E2f2 and E2f3, play a key role in the transition make to their final, differentiated, state.

These proteins help stimulate stem cells to grow and proliferate. But once stem cells begin to differentiate into their final cell type - a cell in the or in the lining of the , for example - the same three proteins switch function and stop them from dividing any more.

The research also shows how these proteins can switch course yet again in cells that have mutations in the retinoblastoma (Rb) gene. Mutated Rb genes occur in many types of cancer, suggesting that these E2f proteins might offer a safe and novel therapeutic target in these tumors.

The findings are published in back-to-back papers in the Dec. 17 issue of the journal Nature.

"We show that these E2fs are gene activators in stem cells but then switch to gene repressors when stem cells begin differentiating," says Gustavo Leone, associate professor of , immunology and medical genetics at Ohio State's James Cancer Hospital and Solove Research Institute. Leone headed the first of the two Nature studies and is a co-author on the second.

"This is a very important step in the process of differentiation," Leone says. "As organs form during development, there comes a time when their growth must stop because an organ needs only a certain number of cells and no more. The switch by these proteins from activators to repressors is essential for that to happen.
"Before this, there was no suspicion that these regulatory proteins had any role in differentiated cells," says Leone. "It was thought they were important only in proliferating cells like stem cells. But that's not true."

Leone and his colleagues show the function of the proteins in differentiation in mouse embryos, retinas, lenses and intestines.

They also show how the three proteins could revert back to gene activators in cancer cells and promote tumor growth in cancers with Rb mutations. "In this case, these proteins are acting abnormally relative to the surrounding tissue, so they might provide a safe therapeutic target," Leone explains. "If we can inactivate these E2fs in cancer cells, perhaps we can prevent further tumor growth without having a major affect on healthy cells."

Explore further: New route to identify drugs that can fight bacterial infections

Provided by Ohio State University Medical Center

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Location, location, location important for genes, too

Aug 29, 2008

Cells become cancerous mainly because they lose control of their growth. To better understand how this happens, a new study at Ohio State University's Comprehensive Cancer Center looks at four genes that help regulate cell ...

How stem cells are regulated

Feb 22, 2007

Researchers from Biotech Research & Innovation Centre (BRIC) at University of Copenhagen have identified a new group of proteins that regulate the function of stem cells. The results are published in the new issue of Cell.

Scientists isolate cancer stem cells

Sep 11, 2008

After years of working toward this goal, scientists at the OU Cancer Institute have found a way to isolate cancer stem cells in tumors so they can target the cells and kill them, keeping cancer from returning.

Study Shows How Normal Cells Influence Tumor Growth

Oct 21, 2009

(PhysOrg.com) -- It was once thought that the two communities of cells within a cancerous breast tumor - fast-growing malignant cells and the normal cells that surround them - existed independently, without interaction. Then ...

MicroRNA regulates cancer stem cells

Dec 13, 2007

One of the biggest stories in cancer research over the past few years has been, unexpectedly, stem cells. Not embryonic stem cells, but tumor stem cells. These mutated cells, which live indefinitely and can seed new tumors, ...

Recommended for you

Diet affects men's and women's gut microbes differently

14 hours ago

The microbes living in the guts of males and females react differently to diet, even when the diets are identical, according to a study by scientists from The University of Texas at Austin and six other institutions published ...

Researchers explore what happens when heart cells fail

16 hours ago

Through a grant from the United States-Israel Binational Science Foundation, Biomedical Engineering Associate Professor Naomi Chesler will embark upon a new collaborative research project to better understand ...

Stem cells from nerves form teeth

18 hours ago

Researchers at Karolinska Institutet in Sweden have discovered that stem cells inside the soft tissues of the tooth come from an unexpected source, namely nerves. These findings are now being published in the journal Nature and co ...

User comments : 0