Black Holes in Star Clusters stir up Time and Space (w/ Video)

Dec 16, 2009
An artist's representation of the burst of gravitational waves resulting from the collision of a colliding pair of black holes. Credit: LIGO Scientific Collaboration (LSC) / NASA.

( -- Within a decade scientists could be able to detect the merger of tens of pairs of black holes every year, according to a team of astronomers at the University of Bonn’s Argelander-Institut fuer Astronomie, who publish their findings in a paper in Monthly Notices of the Royal Astronomical Society. By modelling the behaviour of stars in clusters, the Bonn team find that they are ideal environments for black holes to coalesce. These merger events produce ripples in time and space (gravitational waves) that could be detected by instruments from as early as 2015.

Clusters of stars are found throughout our own and other galaxies and most stars are thought to have formed in them. The smallest looser ‘open clusters’ have only a few stellar members, whilst the largest tightly bound ‘globular clusters’ have as many as several million stars. The highest mass stars in clusters use up their fuel relatively quickly (in just a few million years). The cores of these stars collapse, leading to a violent where the outer layers of the star are expelled into space. The explosion leaves behind a stellar remnant with so strong that not even light can escape - a black hole.

When stars are as close together as they are in clusters, then although still rare events, the likelihood of collisions and mergers between stars of all types, including black holes, is much higher. The black holes sink to the centre of the cluster, where a core that is completely made of up of black holes forms. In the core, the black holes experience a range of interactions, sometimes forming binary pairs and sometimes being ejected from the cluster completely.

This video is not supported by your browser at this time.
A movie depicting the movement of black holes (black dots) and stars (represented by green asterisks) in a star cluster. The black holes, formed when the most massive stars exhaust their hydrogen fuel, are initially spread over a wide region of the cluster. Then, as they are more massive than the rest of the stars, they begin to sink and concentrate within a small region at the cluster centre. When this central black hole cluster becomes dense enough, gravitational waves are emitted due to the mergers of black holes in binary systems. The propagation of gravitational waves from these mergers is depicted by outgoing circles and the wobbling of the whole cluster, representing space-time distortion, while the cluster stars are unmoving (since the gravitational waves, travelling at the speed of light, cross the cluster before the stars can move significantly). Note that the implied propagation speed and the wobbling are not to scale. The time line in millions of years is given on the top axis and the passage of time is denoted by the movement of the white marker. In this model the first binary black hole forms in the cluster and begins radiating gravitational waves after about 600 million years. Credit: University of Bonn

Now Dr Sambaran Banerjee, Alexander von Humboldt postdoctoral fellow, has worked with his University of Bonn colleagues Dr Holger Baumgardt and Professor Pavel Kroupa to develop the first self-consistent simulation of the movement of black holes in star clusters.

The scientists assembled their own star clusters on a high-performance supercomputer, and then calculated how they would evolve by tracing the motion of each and every star and black hole within them.

According to a key prediction of Einstein’s General Theory of Relativity, black hole binaries stir the space-time around them, generating waves that propagate away like ripples on the surface of a lake. These waves of curvature in space-time are known as gravitational waves and will temporarily distort any object they pass through. But to date no-one has succeeded in detecting them.

In the cores of clusters, black hole binaries are sufficiently tightly bound to be significant sources of gravitational waves. If the in a binary system merge, then an even stronger pulse of gravitational waves radiates away from the system.

Based on the new results, the next generation of gravitational wave observatories like the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) could detect tens of these events each year, out to a distance of almost 5000 million light years (for comparison the well known Andromeda Galaxy is just 2.5 million light years away).

Advanced LIGO will be up and running by 2015 and if the Bonn team are right, from then on we can look forward to a new era of gravitational wave astronomy.

Sambaran comments, “Physicists have looked for gravitational waves for more than half a century. But up to now they have proved elusive. If we are right then not only will be found so that General Relativity passes a key test but astronomers will soon have a completely new way to study the Universe. It seems fitting that almost exactly 100 years after Einstein published his theory, scientists should be able to use this exotic phenomenon to watch some of the most exotic events in the cosmos.”

Explore further: Spectacular supernova's mysteries revealed

More information: A preprint of the paper, which will appear in Monthly Notices of the Royal Astronomical Society, is available at

add to favorites email to friend print save as pdf

Related Stories

Proto supermassive binary black hole detected in X-rays

Apr 06, 2006

An international team of astronomers led by D. Hudson from the University of Bonn has detected a proto supermassive binary black hole in images of NASA's Chandra X-ray observatory. They found that these two black holes are ...

Galaxy may hold hundreds of rogue black holes

Jan 09, 2008

If the latest simulation of what happens when black holes merge is correct, there could be hundreds of rogue black holes, each weighing several thousand times the mass of the sun, roaming around the Milky ...

Scientists spy on black-hole eating habits with 'LISA'

Jan 16, 2005

As big fish eat little fish in the Earth's vast oceans, so too do supermassive black holes gorge on smaller black holes and neutron stars, making themselves more massive in the process. Using sophisticated ...

Simulation Breakthrough: When Black Holes Collide

Apr 18, 2006

NASA scientists have reached a breakthrough in computer modeling that allows them to simulate what gravitational waves from merging black holes look like. The three-dimensional simulations, the largest astrophysical ...

How to find a black hole

Oct 20, 2005

Black holes. Just the name evokes mystery and intrigue. But do they really exist? Scientists have discovered at least 20 objects in 20 different galaxies that are potential black holes and may contain event hor ...

Recommended for you

Spectacular supernova's mysteries revealed

Aug 22, 2014

( —New research by a team of UK and European-based astronomers is helping to solve the mystery of what caused a spectacular supernova in a galaxy 11 million light years away, seen earlier this ...

Supernova seen in two lights

Aug 22, 2014

( —The destructive results of a mighty supernova explosion reveal themselves in a delicate blend of infrared and X-ray light, as seen in this image from NASA's Spitzer Space Telescope and Chandra ...

Toothpaste fluorine formed in stars

Aug 21, 2014

The fluorine that is found in products such as toothpaste was likely formed billions of years ago in now dead stars of the same type as our sun. This has been shown by astronomers at Lund University in Sweden, ...

Swirling electrons in the whirlpool galaxy

Aug 20, 2014

The whirlpool galaxy Messier 51 (M51) is seen from a distance of approximately 30 million light years. This galaxy appears almost face-on and displays a beautiful system of spiral arms.

User comments : 6

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Dec 16, 2009
If gravity is spreading in speed of light, and the light is encircling black hole in photon sphere due the gravitational lensing, then it's evident, gravitational waves cannot leave the photons sphere as well. If gravitational waves are able to spread in the way illustrated, it's evident, they're propagating in highly superluminal speed, instead.
2.3 / 5 (3) Dec 16, 2009
The artist depiction looks like the light over Norway that was recently on the news.
1 / 5 (1) Dec 16, 2009 you mean some dense stuff, escaping from LHC?
not rated yet Dec 17, 2009
This is exciting, it will open up another window on the Universe, as well as a whole new way of testing space time theory.
5 / 5 (2) Dec 17, 2009
If gravity is spreading in speed of light, and the light is encircling black hole in photon sphere due the gravitational lensing, then it's evident, gravitational waves cannot leave the photons sphere as well. If gravitational waves are able to spread in the way illustrated, it's evident, they're propagating in highly superluminal speed, instead.

I think you missed this part of the article:
Note that the implied propagation speed and the wobbling are not to scale.
not rated yet Dec 20, 2009
Note that the implied propagation speed and the wobbling are not to scale..

It still makes no difference, if light spreads in the same speed, like gravity: where light wave will stop, there gravity wave should stop as well