Watching Proteins Direct Crystal Growth One Step at a Time (w/ Video)

Dec 16, 2009
Models of peptides and the crystal structure of calcium oxalate monohydrate on an atomic force microscope image collected during crystal growth. The bottom edge of this image is about 60 atoms across. (Image courtesy of Jim DeYoreo, et. al)

(PhysOrg.com) -- Scientists at Berkeley Lab's Molecular Foundry imaged the growth of protein-studded mineral surfaces with unprecedented resolution and provided a glimpse into how living systems engineer key structural materials.

Scientists at Lawrence Berkeley National Laboratory’s Molecular Foundry have imaged the growth of protein-studded mineral surfaces with unprecedented resolution, providing a glimpse into key engineered by living systems. The team’s technique reveals the natural mechanisms employed by creatures at sea and on shore alike, and could provide a means to observe and steer this crystal growth as it occurs.

For millions of years, organisms from to humans have used biomineralization-the process of organizing minerals such as into biological systems-to generate shells, spines, bones and other structural materials. Recently, researchers have begun to unravel the structure and composition of these biominerals. However, understanding how biomolecules interact with minerals to form these complex architectures remains a formidable challenge, as it requires molecular-level resolution and rapid-imaging capabilities that don’t disturb or alter the local environment.

This video is not supported by your browser at this time.


Video: Atomic force microscopy movie shows a peptide adsorbed to a crystal surface while two successive crystal steps interact, then progress beyond the peptide. The peptide temporarily slows the step before transferring up to the next atomic layer. The lattice pattern on the surface corresponds to the molecular structure of the underlying crystal.

Atomic-force microscopy, which tracks nanometer-scale hills and valleys across a crystal’s terrain with a sharp probe, is often used to study surfaces. The deflections a probe encounters across a material are translated into electrical signals then used to create an image of the surface. However, a careful balancing act is required to maintain the resolution provided by a sharp probe and the flexibility needed to leave soft biological molecules unperturbed. Now, Molecular Foundry researchers have developed a tool able to discern delicate biological materials and minute undulations on a crystal’s surface-all while watching the mineralization process in the presence of proteins.

“We’ve found an approach to consistently image soft macromolecules on a hard crystal surface with molecular resolution, and we’ve done it in solution and at room temperature, which is much more applicable to natural environments,” says Jim DeYoreo, deputy director of the Molecular Foundry, a U.S. Department of Energy National User Facility located at Berkeley Lab that provides support to nanoscience researchers around the world.

“With these hybrid probes, we can literally watch bio-molecules interact with a crystal surface as the crystal grows one atomic step at a time. Nobody has been able to watch this process with this kind of resolution until now,” says Raymond Friddle, a post-doctoral scholar at Lawrence Berkeley National Laboratory.

DeYoreo, Friddle, co-authors Matt Weaver and Roger Qiu (Lawrence Livermore National Laboratory), Bill Casey (University of California, Davis) and Andrzej Wierzbicki (University of Southern Alabama), used these ‘hybrid’ atomic-force microscope probes to study the interactions between a growing crystal of calcium oxalate monohydrate, a mineral present in human kidney stones, and peptides, polymer molecules that carry out metabolic functions in living cells. These hybrid probes combine sharpness and flexibility, which is crucial in achieving the speed and resolution required to monitor the growing crystal with minimal disturbance to the peptides.

The team’s findings reveal a complex process. On a positively charged facet of calcium oxalate monohydrate, peptides form a film that acts like a switch to turn crystal growth on or off. However, on a negatively charged facet, peptides jostle together on the surface to create clusters that slow or accelerate crystal growth.

“Our results show the effects of peptides on a growing crystal are far more complicated than with simpler, small molecules. The shapes of peptides in solution tend to fluctuate, and depending on the conditions, the complex processes through which peptides stick to surfaces allows them to control like a set of ‘switches, throttles and brakes’,” Friddle says. “They can either slow or accelerate growth, or even switch it sharply from on to off with small changes in solution conditions.”

The team plans to use their new approach to investigate fundamental physics of crystal surfaces in solutions and deepen their understanding of how biomolecules and interact. “We believe these results will lay the foundation for better control over technological crystals, biomimetic approaches to materials synthesis, and potential therapies for hard-tissue pathologies,” DeYoreo adds.

Explore further: Breakthrough in flexible electronics enabled by inorganic-based laser lift-off

More information: The paper “Subnanometer atomic force microscopy of peptide-mineral interactions links clustering and competition to acceleration and catastrophe,” by Raymond Friddle, Matt Weaver, Roger Qiu, Andrzej Wierzbicki, William H. Casey and James J. DeYoreo, appears in Proceedings of the National Academy of Sciences.

add to favorites email to friend print save as pdf

Related Stories

Flying MAV Navigates Without GPS (w/ Video)

Nov 02, 2009

(PhysOrg.com) -- During the last several years, researchers have been building micro air vehicles (MAVs) that can autonomously fly through different environments by relying on GPS for navigation. Recently, ...

New robot skier takes to the slopes (w/ Video)

Oct 23, 2009

(PhysOrg.com) -- A new robot skier has been invented that can be fitted with off-the-shelf skis. This is not the first skiing robot, since Japanese scientists have produced their own (see PhysOrg.com article here), but is bigger and heavie ...

Stable Opera 10.10 browser with Unite now available

Nov 24, 2009

(PhysOrg.com) -- The web browser Opera 10.10 has been released as a stable version, and it has a number of new features to enhance the browsing experience, including "Unite", which is a group of applications ...

BlackBerry Storm 2 coming soon (w/ Video)

Oct 20, 2009

(PhysOrg.com) -- RIM are soon to release their updated BlackBerry, the Storm 2 smart phone, with a more streamlined design and touch-sensitive buttons instead of the hardware buttons of the first version.

Recommended for you

Protons fuel graphene prospects

2 hours ago

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

Cooling with the coldest matter in the world

Nov 24, 2014

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree ...

Magnetic fields and lasers elicit graphene secret

Nov 24, 2014

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have studied the dynamics of electrons from the "wonder material" graphene in a magnetic field for the first time. This led to the discovery of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.