Icy moons of Saturn and Jupiter may have conditions needed for life

Dec 15, 2009 By Daniel Strain
This image captured by NASA's Cassini spacecraft shows jets of ice particles, water vapor, and trace organic compounds shooting from the surface of Saturn's moon Enceladus. Credit: NASA/JPL/Space Science Institute

(PhysOrg.com) -- Scientists once thought that life could originate only within a solar system's "habitable zone," where a planet would be neither too hot nor too cold for liquid water to exist on its surface. But according to planetary scientist Francis Nimmo, evidence from recent NASA missions suggests that conditions necessary for life may exist on the icy satellites of Saturn and Jupiter.

"If these moons are habitable, it changes the whole idea of the habitable zone," said Nimmo, a professor of Earth and planetary sciences at UC Santa Cruz. "It changes our thinking about how and where we might find life outside of the solar system."

Nimmo discussed the impact of ice dynamics on the habitability of the moons of and Jupiter on Tuesday, December 15, at the annual meeting of the American Geophysical Union in San Francisco.

Jupiter's moon Europa and Saturn's , in particular, have attracted attention because of evidence that oceans of liquid water may lie beneath their icy surfaces. This evidence, plus discoveries of deep-sea hydrothermal vent communities on Earth, suggests to some that these frozen moons just might harbor life.

"Liquid water is the one requirement for life that everyone can agree on," Nimmo said.

The icy surfaces may insulate deep oceans, shift and fracture like tectonic plates, and mediate the flow of material and energy between the moons and space.

Several lines of evidence support the presence of subsurface oceans on Europa and Enceladus, Nimmo said. In 2000, for example, NASA's Galileo spacecraft measured an unusual magnetic field around Europa that was attributed to the presence of an ocean beneath the moon's surface. On Enceladus, the discovered geysers shooting ice crystals a hundred miles above the surface, which also suggests at least pockets of subsurface water, Nimmo said (see earlier story).

Liquid water isn't easy to find in the cold expanses beyond Earth's orbit. But according to Nimmo, tidal forces could keep subsurface oceans from freezing up. Europa and Enceladus both have eccentric orbits that bring them alternately close to and then far away from their respective planets. These elongated orbits create ebbs and flows of gravitational energy between the planets and their satellites.

"A moon like Enceladus is getting squeezed and stretched and squeezed and stretched," Nimmo said.

The extent to which this squeezing and stretching transforms into heat remains unclear, he said. Tidal forces likely shift plates in the lunar cores, creating friction and geothermal energy. This energy may also rub surface ice against itself at the sites of deep ice fissures, creating heat and melting, according to Nimmo. Enceladus's geysers appear to originate from these shifting faults, and the thin lines running along Europa's surface suggest geologically active plates, he said.

A frozen outer layer may be crucial to maintaining oceans that could harbor life on these moons. The icy surfaces may shield the oceans from the frigidity of space and from radiation harmful to living organisms.

"If you want to have life, you want the ocean to last a long time," Nimmo said. "The ice above acts like an insulating blanket."

Enceladus is so small and its ice so thin that scientists expect its oceans to freeze periodically, making habitability less likely, Nimmo said. Europa, however, is the perfect size to heat its oceans efficiently. It is larger than Enceladus but smaller than moons such as Ganymede, which has thick ice surrounding its core and blocking communication with the exterior. If exists on Ganymede, it may be trapped between layers of ice that separate it from both the core and the surface.

The core and the surface of these moons are both potential sources of the chemical building blocks needed for life. Solar radiation and comet impacts leave a chemical film on the surfaces. To sustain living organisms, these chemicals would have to migrate to the subsurface oceans, and this can occur periodically around ice fissures on moons with relatively thin shells like Europa and Enceladus. Organic molecules and minerals may also stream out of their cores, Nimmo said. These nutrients could support communities like those seen around hydrothermal vents on Earth.

Nimmo cautioned that being habitable is no guarantee that a planetary body is actually inhabited. It is unlikely that we will find life elsewhere in our solar system, despite all the time and resources devoted to the search, he said. But such a discovery would certainly be worth the effort.

"I think pretty much everyone can agree that finding life anywhere else in the solar system would be the scientific discovery of the millennium," Nimmo said.

Explore further: A star's early chemistry shapes life-friendly atmospheres

add to favorites email to friend print save as pdf

Related Stories

Frictional heating explains plumes on Enceladus

May 16, 2007

Rubbing your hands together on a cold day generates a bit of heat, and the same process of frictional heating may be what powers the geysers jetting out from the surface of Saturn's moon Enceladus.

Wandering poles left scars on Europa

May 14, 2008

Curved features on Jupiter’s moon Europa may indicate that its poles have wandered by almost 90°, report scientists from the Carnegie Institution, Lunar and Planetary Institute, and University of California, ...

Hot spot on Enceladus causes plumes

Dec 10, 2007

Enceladus, the tiny satellite of Saturn, is colder than ice, but data gathered by the Cassini-Huygens Mission to Saturn and Titan has detected a hot spot that could mean there is life in the old moon after ...

Recommended for you

Professional and amateur astronomers join forces

8 hours ago

(Phys.org) —Long before the term "citizen science" was coined, the field of astronomy has benefited from countless men and women who study the sky in their spare time. These amateur astronomers devote hours ...

A star's early chemistry shapes life-friendly atmospheres

Apr 23, 2014

Born in a disc of gas and rubble, planets eventually come together as larger and larger pieces of dust and rock stick together. They may be hundreds of light-years away from us, but astronomers can nevertheless ...

Image: X-raying the cosmos

Apr 22, 2014

When we gaze up at the night sky, we are only seeing part of the story. Unfortunately, some of the most powerful and energetic events in the Universe are invisible to our eyes – and to even the best optical ...

User comments : 0

More news stories

Habitable exoplanets are bad news for humanity

Last week, scientists announced the discovery of Kepler-186f, a planet 492 light years away in the Cygnus constellation. Kepler-186f is special because it marks the first planet almost exactly the same size as Earth ...

Professional and amateur astronomers join forces

(Phys.org) —Long before the term "citizen science" was coined, the field of astronomy has benefited from countless men and women who study the sky in their spare time. These amateur astronomers devote hours ...

Kazakh satellite to be launched into orbit

Kazakhstan's first-ever Earth observation satellite is to be fired into orbit next week from the European spaceport in Kourou in French Guiana, launch company Arianespace said.

First-of-its-kind NASA space-weather project

A NASA scientist is launching a one-to-two-year pilot project this summer that takes advantage of U.S. high-voltage power transmission lines to measure a phenomenon that has caused widespread power outages ...

Study links California drought to global warming

While researchers have sometimes connected weather extremes to man-made global warming, usually it is not done in real time. Now a study is asserting a link between climate change and both the intensifying California drought ...