Prussian blue linked to the origin of life

Dec 14, 2009
This is Prussian blue. This salt could cause substances essential for life. Credit: Nagem R.

A team of researchers from the Astrobiology Centre (INTA-CSIC) has shown that hydrogen cyanide, urea and other substances considered essential to the formation of the most basic biological molecules can be obtained from the salt Prussian blue. In order to carry out this study, published in the journal Chemistry & Biodiversity, the scientists recreated the chemical conditions of the early Earth.

"We have shown that when Prussian blue is dissolved in ammoniac solutions it produces hydrogen cyanide, a substance that could have played a fundamental role in the creation of the first bio-organic molecules, as well as other precursors to the origin of life, such as urea, dimethylhydantoin and lactic acid", Marta Ruiz Bermejo, lead author of the study and a researcher at the Astrobiology Centre (CSIC-INTA), tells SINC.

Urea is considered to be an important reagent in synthesising pyrimidines (the derivatives of which form part of the nucleic acids DNA and RNA), and it has been suggested that hydantoins could be the precursors of peptides and amino acids (the components of proteins), while lactic acid is also of biological interest because, along with malic acid, it can play a role in electron donor-recipient systems.

The researcher and her team have proved that these and other compounds originate from the cyanide liberated by the salt Prussian blue (the name of which refers to the dye used in the uniforms of the Prussian Army) when it is subjected for several days to conditions of pH12 and relatively high temperatures (70-150ºC) in a damp, oxygen-free ammoniac environment, similar to early conditions on Earth. The results of the study have been published recently in the journal Chemistry & Biodiversity.

"In addition, when Prussian blue decomposes in this ammoniac, anoxic environment, this complex salt, called iron (III) hexacyanoferrate (II), also turns out to be an excellent precursor of hematite, the most stable and commonly found form of iron (III) oxide on the surface of the Earth", explains Ruiz Bermejo.

Hematite is related to the so-called Banded Iron Formations (BIF), the biological or geological origin of which is the source of intense debate among scientists. The oldest of these formations, more than two billion years old, have been found in Australia.

The researchers have confirmed in other studies that Prussian blue can be obtained in prebiotic conditions (from iron ions in methane atmosphere conditions with electrical discharges). The synthesis of this salt and its subsequent transformation into hematite offers an alternative model to explain the formation of the banded iron in abiotic conditions in the absence of oxygen.

Ruiz Bermejo concludes that Prussian blue "could act as a carbon concentrator in the prebiotic hydrosphere, and that its wet decomposition in anoxic conditions could liberate cyanide and cyanogen, with the subsequent formation of organic molecules and iron oxides".

More information: Marta Ruiz Bermejo, Celia Rogero, César Menor Salván, Susana Osuna Esteban, José Ángel Martín-Gago y Sabino Veintemillas Verdaguer. "Thermal wet decomposition of Prussian Blue: Implications for Prebiotic Chemistry". CHEMISTRY & BIODIVERSITY 6 (9): 1309-1322, 2009.

Source: FECYT - Spanish Foundation for Science and Technology

Explore further: Four billion-year-old chemistry in cells today

add to favorites email to friend print save as pdf

Related Stories

Prussian Blue for information storage

Jan 17, 2007

In the family of Prussian blue, there is a compound that can act as a switch: it is not magnetic at the outset, but it can become magnetized by the effect of light and return to its initial state by heating. Researchers of ...

Does prebiotic material exist in space?

Mar 26, 2009

Spanish and French astrophysicists have identified a band in the infrared range that serves to track the presence of organic material rich in oxygen and nitrogen in the interstellar dust grains. Should any ...

Researcher Presents Origin-Of-Life Theory for Young Earth

Aug 14, 2007

Some of the elements necessary to support life on Earth are widely known - oxygen, carbon and water, to name a few. Just as important in the existence of life as any other component is the presence of adenine, an essential ...

Recommended for you

Building the ideal rest stop for protons

19 hours ago

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

20 hours ago

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

peteone1
not rated yet Dec 28, 2009
"The proposal presented in this article is totally off the wall. It is obvious that the authors know little or nothing of inorganic chemistry. Prussian blue is not found in any mineral even in the slightest amounts. It is a complex iron cyanide which can be oxidized to hematite, but there are no metallic complex cyanides of any kind found anywhere in the earth. So to propose that Prussion blue was present in the early earth and subsequently oxidized to hematite (Fe2O3) is ludicrous. Obviously some scientists are so despereate to provide any kind of support for their beliefs, they are even willing to go out on a limb and expose their own lack of scientific intelligence."

Edward A. Boudreaux, PhD Professor Emeritus, Inorganic Chemistry/ Chemical Physics, Tulane University, Univ of New Orleans