Stem cell derived neurons for research relevant to Alzheimer's and Niemann-Pick type C diseases

Dec 09, 2009

Stem cell derived neurons may allow scientists to determine whether breakdowns in the transport of proteins, lipids and other materials within cells trigger the neuronal death and neurodegeneration that characterize Alzheimer's disease (AD) and the rarer but always fatal neurological disorder, Niemann-Pick Type C (NPC), according to a presentation that Lawrence B. Goldstein, Ph.D., of the University of California, San Diego, School of Medicine and Howard Hughes Medical Institute (HHMI) will give at the American Society for Cell Biology (ASCB) 49th Annual Meeting, Dec. 5-9, 2009 in San Diego.

In research using fruit flies, mice and human cell cultures as lab models, Goldstein pioneered the study of how early defects in the intracellular physical transport system may be the driving force behind severe neuronal dysfunction.

Using human (hESCs), Goldstein and his team have produced human neurons in which the NPC gene is switched off, providing the first close look at cellular transport in a human neuron lacking normal function of the gene.

With induced (IPS), Goldstein has derived human neurons representing the genetic "familial" form of AD as well as the far more common "sporadic" AD.

By comparing the biochemical and cellular makeup of these two types of stem cell derived neurons, Goldstein hopes to reveal how their known genetic differences affect their transport of vital cellular cargoes and other cellular behaviors.

Such research "may yield an understanding of what components of sporadic disease are defined by ," said Goldstein, professor in the Department of Cellular & Molecular Medicine, an HHMI investigator and director of UC San Diego's Stem Cell Program.

AD is now the seventh leading cause of death in the U.S., according to the National Centers for Health Statistics. The National Niemann-Pick Disease Foundation reports that children born with NPC rarely survive beyond the age of 20.

Source: American Society for Cell Biology

Explore further: Top Japan lab dismisses ground-breaking stem cell study

add to favorites email to friend print save as pdf

Related Stories

Not all embryonic stem cell lines are created equal

Aug 06, 2007

When it comes to generating neurons, researchers have found that not all embryonic stem (ES) cell lines are equal. In comparing neurons generated from two NIH-approved embryonic stem cell lines, scientists have uncovered ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

3 hours ago

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.