Stem cell derived neurons for research relevant to Alzheimer's and Niemann-Pick type C diseases

Dec 09, 2009

Stem cell derived neurons may allow scientists to determine whether breakdowns in the transport of proteins, lipids and other materials within cells trigger the neuronal death and neurodegeneration that characterize Alzheimer's disease (AD) and the rarer but always fatal neurological disorder, Niemann-Pick Type C (NPC), according to a presentation that Lawrence B. Goldstein, Ph.D., of the University of California, San Diego, School of Medicine and Howard Hughes Medical Institute (HHMI) will give at the American Society for Cell Biology (ASCB) 49th Annual Meeting, Dec. 5-9, 2009 in San Diego.

In research using fruit flies, mice and human cell cultures as lab models, Goldstein pioneered the study of how early defects in the intracellular physical transport system may be the driving force behind severe neuronal dysfunction.

Using human (hESCs), Goldstein and his team have produced human neurons in which the NPC gene is switched off, providing the first close look at cellular transport in a human neuron lacking normal function of the gene.

With induced (IPS), Goldstein has derived human neurons representing the genetic "familial" form of AD as well as the far more common "sporadic" AD.

By comparing the biochemical and cellular makeup of these two types of stem cell derived neurons, Goldstein hopes to reveal how their known genetic differences affect their transport of vital cellular cargoes and other cellular behaviors.

Such research "may yield an understanding of what components of sporadic disease are defined by ," said Goldstein, professor in the Department of Cellular & Molecular Medicine, an HHMI investigator and director of UC San Diego's Stem Cell Program.

AD is now the seventh leading cause of death in the U.S., according to the National Centers for Health Statistics. The National Niemann-Pick Disease Foundation reports that children born with NPC rarely survive beyond the age of 20.

Source: American Society for Cell Biology

Explore further: How calcium regulates mitochondrial carrier proteins

add to favorites email to friend print save as pdf

Related Stories

Not all embryonic stem cell lines are created equal

Aug 06, 2007

When it comes to generating neurons, researchers have found that not all embryonic stem (ES) cell lines are equal. In comparing neurons generated from two NIH-approved embryonic stem cell lines, scientists have uncovered ...

Recommended for you

How calcium regulates mitochondrial carrier proteins

22 hours ago

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

23 hours ago

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.