NASA Global Precipitation Measurement Mission Passes Major Review

Dec 08, 2009 by Sarah DeWitt

(PhysOrg.com) -- NASA's effort to deploy the first satellite mission to advance global precipitation observations from space moved closer to this goal when agency officials approved critical elements for the Global Precipitation Measurement (GPM) mission on Dec. 2.

NASA gave GPM the green light to proceed to the mission implementation phase in a review meeting chaired by ’s Associate Administrator Christopher Scolese.

Building on the success of the Measuring Mission (TRMM), a joint project between NASA and the Japan Aerospace Exploration Agency (JAXA), GPM will usher in a new generation of space-based observations of global precipitation, a key element of the Earth’s climate and also the primary source of freshwater. GPM is an international collaboration that currently includes NASA and JAXA, with anticipated contributions from additional international partners.

"This joint NASA/JAXA mission is scientifically important and stands as a prime example of the power of international cooperation in Earth observations," said NASA’s Earth Science Division director Michael Freilich. "GPM's global precipitation measurements will advance our abilities to monitor and accurately predict precipitation on a global basis. GPM builds on the strong scientific and technical collaborations developed between NASA and JAXA. GPM instruments will also provide key calibration references to allow measurements from a wide variety of other missions, including those from other U.S. and international organizations, to be combined to provide accurate predictions and global data sets."

The heart of the GPM mission is a spaceborne Core Observatory that serves as a reference standard to unify and advance measurements from a constellation of multinational research and operational satellites carrying microwave sensors. GPM will provide uniformly calibrated precipitation measurements globally every 2-4 hours for scientific research and societal applications. The GPM Core Observatory sensor measurements will for the first time make quantitative observations of precipitation particle size distribution, which is key to improving the accuracy of precipitation estimates by microwave radiometers and radars.

The GPM Core Observatory will carry a Dual-frequency Precipitation Radar (DPR) and a multi-channel GPM Microwave Imager (GMI). DPR will have greater measurement sensitivity to light rain and snowfall compared to the TRMM radar. GMI uses a set of frequencies to retrieve heavy, moderate, and light precipitation from emission and scattering signals of water droplets and ice particles.

GPM is the cornerstone of the multinational Committee on Earth Observation Satellites Precipitation Constellation that addresses one of the key observations of the Global Earth Observation System of Systems.

NASA is responsible for the GPM Core Observatory spacecraft bus, the GMI carried on it, the Core Observatory integration, launch site processing, mission operation and science data processing and distribution. NASA is also responsible for the development of a second GMI to be flown on a partner-provided Low-Inclination Observatory (LIO) and the Instrument Operational Center for the LIO. The GPM Core Observatory is scheduled for launch in July 2013 from JAXA’s Tanegashima launch site on an H-IIA rocket.

Provided by JPL/NASA (news : web)

Explore further: MAVEN studies passing comet and its effects

add to favorites email to friend print save as pdf

Related Stories

NASA Extends TRMM Operations Through 2004 Hurricane Season

Aug 06, 2004

NASA will extend operation of the Tropical Rainfall Measuring Mission (TRMM) through the end of 2004, in light of a recent request from the National Oceanic and Atmospheric Administration (NOAA). The extension, to be und ...

Mysteries of Rain and Snow

Mar 05, 2007

People have lived with rain and snow for millennia, and scientists have studied weather for more than a century. You might think that, after all that time, we would have precipitation pretty much figured out. ...

NASA's TRMM satellite sees heavy rainfall in Choi-Wan

Sep 17, 2009

NASA and the Japanese Space Agency's Tropical Rainfall Measuring Mission (TRMM) satellite flew over the center of Super Typhoon Choi-Wan at 2:34 EDT on September 17, 2009 and captured heavy rainfall around ...

Recommended for you

MAVEN studies passing comet and its effects

2 hours ago

NASA's newest orbiter at Mars, MAVEN, took precautions to avoid harm from a dust-spewing comet that flew near Mars today and is studying the flyby's effects on the Red Planet's atmosphere.

How to safely enjoy the October 23 partial solar eclipse

2 hours ago

2014 – a year rich in eclipses. The Moon dutifully slid into Earth's shadow in April and October gifting us with two total lunars. Now it's the Sun's turn. This Thursday October 23 skywatchers across much ...

How to grip an asteroid

2 hours ago

For someone like Edward Fouad, a junior at Caltech who has always been interested in robotics and mechanical engineering, it was an ideal project: help develop robotic technology that could one day fly on ...

Image: Comet 67P/Churyumov–Gerasimenko

5 hours ago

It was 45 years ago when astronomer Klim Churyumov and Svetlana Gerasimenko, one of his researchers, unwittingly began a new chapter in the history of space exploration.

Extreme ultraviolet image of a significant solar flare

5 hours ago

The sun emitted a significant solar flare on Oct. 19, 2014, peaking at 1:01 a.m. EDT. NASA's Solar Dynamics Observatory, which is always observing the sun, captured this image of the event in extreme ultraviolet ...

Heavy metal frost? A new look at a Venusian mystery

Oct 20, 2014

Venus is hiding something beneath its brilliant shroud of clouds: a first order mystery about the planet that researchers may be a little closer to solving because of a new re-analysis of twenty-year-old ...

User comments : 0