Researchers finds hidden sensory system in the skin

Dec 08, 2009

Researchers report that the human body has an entirely unique and separate sensory system aside from the nerves that give most of us the ability to touch and feel. Surprisingly, this sensory network is located throughout our blood vessels and sweat glands, and is for most people, largely imperceptible. This discovery may shed light on the causes of unexplained chronic pain conditions such as fibromyalgia.

The human sensory experience is far more complex and nuanced than previously thought, according to a groundbreaking new study published in the December 15 issue of the journal Pain. In the article, researchers at Albany Medical College, the University of Liverpool and Cambridge University report that the human body has an entirely unique and separate sensory system aside from the nerves that give most of us the ability to touch and feel. Surprisingly, this sensory network is located throughout our blood vessels and sweat glands, and is for most people, largely imperceptible.

"It's almost like hearing the subtle sound of a single instrument in the midst of a symphony," said senior author Frank Rice, PhD, a Neuroscience Professor at Albany Medical College (AMC), who is a leading authority on the nerve supply to the skin. "It is only when we shift focus away from the associated with normal skin sensation that we can appreciate the sensation hidden in the background."

The research team discovered this hidden sensory system by studying two unique patients who were diagnosed with a previously unknown abnormality by lead author David Bowsher, M.D., Honorary Senior Research Fellow at the University of Liverpool's Pain Research Institute. These patients had an extremely rare condition called congenital insensitivity to pain, meaning that they were born with very little ability to feel pain. Other rare individuals with this condition have excessively dry skin, often mutilate themselves accidentally and usually have severe mental handicaps. "Although they had a few accidents over their lifetimes, what made these two patients unique was that they led normal lives. Excessive sweating brought them to the clinic, where we discovered their severe lack of pain sensation," said Dr. Bowsher. "Curiously, our conventional tests with sensitive instruments revealed that all their skin sensation was severely impaired, including their response to different temperatures and mechanical contact. But, for all intents and purposes, they had adequate sensation for daily living and could tell what is warm and cold, what is touching them, and what is rough and smooth."

The mystery deepened when Dr. Bowsher sent skin biopsies across the ocean to Dr. Rice's laboratory, which focuses on multi-molecular microscopic analyses of nerve endings in the skin, especially in relation to chronic pain conditions such as those caused by nerve injuries, diabetes, and shingles. These unique analyses were pioneered by Dr. Rice at Albany Medical College (AMC) along with collaborators at the Karolinska Institute in Stockholm, Sweden. "Under normal conditions, the skin contains many different types of nerve endings that distinguish between different temperatures, different types of mechanical contact such as vibrations from a cell phone and movement of hairs, and, importantly, painful stimuli," said Dr. Rice. "Much to our surprise, the skin we received from England lacked all the nerve endings that we normally associated with skin sensation. So how were these individuals feeling anything?"

The answer appeared to be in the presence of sensory nerve endings on the small blood vessels and sweat glands embedded in the skin. "For many years, my colleagues and I have detected different types of nerve endings on tiny blood vessels and sweat glands, which we assumed were simply regulating blood flow and sweating. We didn't think they could contribute to conscious sensation. However, while all the other sensory endings were missing in this unusual , the and sweat glands still had the normal types of nerve endings. Apparently, these unique individuals are able to 'feel things' through these remaining nerve endings," said Dr. Rice. "What we learned from these unusual individuals is that there's another level of sensory feedback that can give us conscious tactile information. Problems with these nerve endings may contribute to mysterious pain conditions such as migraine headaches and fibromyalgia, the sources of which are still unknown, making them very difficult to treat."

More information: Bowsher D, Geoffrey Woods C, Nicholas AK, Carvalho OM, Haggett CE, Tedman B, Mackenzie JM, Crooks D, Mahmood N, Aidan Twomey J, Hann S, Jones D, Wymer JP, Albrecht PJ, Argoff CE, Rice FL. Absence of pain with hyperhidrosis: A new syndrome where vascular afferents may mediate cutaneous sensation. PAIN. 2009 Dec 15;147(1-3):287-98.
http://www.painjournalonline.com/article/S0304-3959%2809%2900526-0/abstract

Source: Integrated Tissue Dynamics (INTIDYN)

Explore further: Diet affects men's and women's gut microbes differently

add to favorites email to friend print save as pdf

Related Stories

Cold feeling traced to source

Dec 18, 2007

For the first time, neuroscientists have visualized cold fibers – strands reaching from sensory neurons near the spinal cord to nerve endings in the skin tuned to sense different types of cold. The study and pictures appear ...

A pain-free window into painful neuropathies

Dec 05, 2007

Scientists have demonstrated a new technique for detecting a painful nerve condition known as neuropathy, which affects millions of people with diabetes and many other patients as well.

Study: Why cold is such a pain

Jun 14, 2007

German scientists have identified a key molecule that helps animals feel pain associated with low temperatures.

ATP is a key to feel warm temperature

Oct 08, 2009

A Japanese research group led by Prof. Makoto Tominaga and Dr. Sravan Mandadi (National Institute for Physiological Sciences: NIPS) found that ATP plays a key role in transmitting temperature information from skin keratinocytes ...

Recommended for you

Diet affects men's and women's gut microbes differently

14 hours ago

The microbes living in the guts of males and females react differently to diet, even when the diets are identical, according to a study by scientists from The University of Texas at Austin and six other institutions published ...

Researchers explore what happens when heart cells fail

16 hours ago

Through a grant from the United States-Israel Binational Science Foundation, Biomedical Engineering Associate Professor Naomi Chesler will embark upon a new collaborative research project to better understand ...

Stem cells from nerves form teeth

18 hours ago

Researchers at Karolinska Institutet in Sweden have discovered that stem cells inside the soft tissues of the tooth come from an unexpected source, namely nerves. These findings are now being published in the journal Nature and co ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

jshloram
not rated yet Dec 15, 2009
Hmmmm.... I wondering about migraine sufferers?