Delivering medicine directly into a tumor

Dec 07, 2009

Researchers at Burnham Institute for Medical Research at University of California, Santa Barbara have identified a peptide (a chain of amino acids) that specifically recognizes and penetrates cancerous tumors but not normal tissues. The peptide was also shown to deliver diagnostic particles and medicines into the tumor. This new peptide, called iRGD, could dramatically enhance both cancer detection and treatment. The work is being published December 8 in the journal Cancer Cell.

Led by Erkki Ruoslahti, M.D., Ph.D., distinguished Burnham professor at UCSB, this research was built on Dr. Ruoslahti's previous discovery of "vascular zip codes," which showed that in different tissues (including diseased tissues) have different signatures. These signatures can be detected and used to dock drugs onto vessels inside the diseased tissue. In addition to homing in on tumor vessels, the new iRGD peptide penetrates them to bind inside the tumor. Previous have been shown to recognize and bind to tumors, but were unable to go beyond the tumor blood vessels.

"This peptide has extraordinary tumor-penetrating properties, and I hope that it will make possible substantial improvements in cancer treatment," says Dr. Ruoslahti. "In our animal studies, the iRGD peptide has increased the efficacy of a number of anti-cancer drugs without increasing their side effects. If these animal experiments translate into human cancers, we would be able to treat cancer more effectively than before, while greatly reducing the side effects the patient would suffer."

The novel iRGD peptide, identified by using phage display for a peptide that binds to the blood vessels of pancreatic and bone tumors, was tested to determine its ability to penetrate tumors. Researchers injected fluorescent-labeled iRGD into tumor-bearing mice and found that the peptide accumulated in a variety of tumors, including prostate, breast, pancreatic, brain and other types. In addition, the peptide only targeted the tumors and did not accumulate in normal tissue.

Iron oxide nanoworms, which can be visualized by magnetic resonance imaging, were coupled to the peptide and shown to penetrate the tumors, whereas uncoupled nanoworms could not. This demonstrates that iRGD can deliver diagnostics to tumors. The anti-cancer drug Abraxane was also shown to target, penetrate and spread more within tissue when coupled to iRGD than with other formulations.

Source: Burnham Institute (news : web)

Explore further: Prosocial internet support group not beneficial for breast cancer

add to favorites email to friend print save as pdf

Related Stories

Homing nanoparticles pack multiple assault on tumors

Jan 08, 2007

A collaborative team led by Erkki Ruoslahti, M.D., Ph.D., of the Burnham Institute for Medical Research at UC Santa Barbara (Burnham) has developed nanoparticles that seek out tumors and bind to their blood vessels, and then ...

Scientists develop nanoparticles to battle cancer

Jan 31, 2007

On a quest to modernize cancer treatment and diagnosis, an MIT professor and her colleagues have created new nanoparticles that mimic blood platelets. The team wants to use these new multifunctional particles to carry out ...

Researchers target tumors with tiny 'nanoworms'

May 07, 2008

Scientists at UC San Diego, UC Santa Barbara and MIT have developed nanometer-sized “nanoworms” that can cruise through the bloodstream without significant interference from the body’s immune defense ...

Small peptide found to stop lung cancer tumor growth in mice

Aug 26, 2009

In new animal research done by investigators at Wake Forest University School of Medicine, scientists have discovered a treatment effective in mice at blocking the growth and shrinking the size of lung cancer tumors, one ...

Multifunctional Nanoparticles Image and Treat Brain Tumors

Dec 04, 2006

Combining two promising approaches to diagnosing and treating cancer, a multidisciplinary research team at the University of Michigan has created a targeted multifunctional polymer nanoparticle that successfully images and ...

Recommended for you

Immune checkpoint inhibitors may work in brain cancers

Nov 21, 2014

New evidence that immune checkpoint inhibitors may work in glioblastoma and brain metastases was presented today by Dr Anna Sophie Berghoff at the ESMO Symposium on Immuno-Oncology 2014 in Geneva, Switzerland.

New model of follow up for breast cancer patients

Nov 21, 2014

Public health researchers from the University of Adelaide have evaluated international breast cancer guidelines, finding that there is potential to improve surveillance of breast cancer survivors from both a patient and health ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.