The thalamus, middleman of the brain, becomes a sensory conductor

Dec 07, 2009

Two new studies show that the thalamus--the small central brain structure often characterized as a mere pit-stop for sensory information on its way to the cortex--is heavily involved in sensory processing, and is an important conductor of the brain's complex orchestra.

Published in Nature Neuroscience and the , the two studies from the laboratory of Murray Sherman both demonstrate the important role of the thalamus in shaping what humans see, hear and feel.

"The thalamus really hasn't been a part of people's thinking of how cortex functions," said Sherman, professor and chairman of neurobiology at the University of Chicago Medical Center. "It's viewed as a way to get information to cortex in the first place and then its role is done. But the hope is these kinds of demonstrations will start putting the thalamus on the map."

When light hits the retina of the eye, that information makes a stopover in the thalamus before being sent to the of the to be processed. Similarly, auditory and somatosensory (touch) information is routed through the thalamus before traveling to cortex for more complex processing.

One set of experiments, conducted by Brian Theyel and Daniel Llano in Sherman's laboratory and published online Sunday December 6 in , used a novel imaging technique to demonstrate how the thalamus remains a part of the conversation even after that initial "relay."

The flavoprotein autofluorescence imaging technique, developed with University of Chicago assistant professor of Naoum Issa, allowed the researchers to observe in a specially-prepared mouse brain slice that preserved connections between thalamus and somatosensory cortex.

Once sensory information reaches the cortex, it is thought to remain segregated there as it moves from primary cortex to secondary cortex and higher-order areas. But when Theyel severed the direct connection between primary and secondary cortical regions, stimulating primary somatosensory cortex still activated secondary cortex as well as the thalamus (see video), suggesting a robust pathway from cortex to thalamus and back. Only when the thalamus itself is interrupted does the activation of secondary cortex fail.

The observation that at least a portion of sensory information passes back through the thalamus on its travels between cortical areas refutes the notion of the thalamus as a passive, one-time relay station, Theyel and Sherman said.

"The ultimate reality is that without thalamus, the cortex is useless, it's not receiving any information in the first place," said Theyel, a postdoctoral researcher. "And if this other information-bearing pathway is really critical, it's involved in higher-order cortical functioning as well."

The somatosensory pathway finding demonstrates for the first time that this corticothalamocortical loop, which is also present in the auditory and visual systems, significantly activates cortex. Keeping the thalamus "in the loop" may help the brain coordinate sensory information with motor systems to direct attention or coordinate multiple cortical areas to accomplish different tasks, Sherman said.

"The thalamus is a remarkable bottleneck," Sherman said. "But that may be because as a bottleneck, it provides a convenient way to control the flow of information. It is a very strategically organized structure."

In the PNAS paper, published online Monday, December 7, postdoctoral researcher Charles Lee mapped two auditory pathways entering different parts of the thalamus to see whether they carried the same or different information.

Lee recorded from neurons in different areas of the thalamus while stimulating different areas of the inferior colliculus, another brain region of the auditory pathway. When the central nucleus of the inferior colliculus was stimulated it excited an area in the thalamus known to project to primary auditory cortex, suggesting that this is the direct route for auditory information through the brain.

By contrast, stimulating the surrounding "shell" region of the inferior colliculus provokes a different response, sending a mixed combination of excitatory and inhibitory input to a different region of the thalamus in contact with higher-order cortex.

"These are two parallel streams serving different functions," Lee said. "The thalamus is also the central hub for transferring information between cortical areas. Rather than carrying information, this second pathway winds up modulating information being sent between cortical areas."

Both papers newly characterize the complexity of the thalamus and its role in shaping sensory information both before and after that information reaches higher cortical regions - not a crossroads, but a conductor.

"These experiments not only give you a new way of looking at how cortex functions, but also answers a question about what most of thalamus is doing," Sherman said. "People who study how the functions now have to take the thalamus into account. This can't be ignored."

Source: University of Chicago Medical Center

Explore further: Know the brain, and its axons, by the clothes they wear

add to favorites email to friend print save as pdf

Related Stories

Scientists explain inception of perception in the brain

Mar 05, 2007

The taste of champagne, the sound of a train, the flash of a pop fly into left field – indeed all of human perception – begins in the brain’s center. That’s where sensory information passes from the thalamus to the ...

Sound adds speed to visual perception

Aug 12, 2008

The traditional view of individual brain areas involved in perception of different sensory stimuli—i.e., one brain region involved in hearing and another involved in seeing—has been thrown into doubt in recent years. ...

Recommended for you

Know the brain, and its axons, by the clothes they wear

Apr 18, 2014

(Medical Xpress)—It is widely know that the grey matter of the brain is grey because it is dense with cell bodies and capillaries. The white matter is almost entirely composed of lipid-based myelin, but ...

Turning off depression in the brain

Apr 17, 2014

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Rapid whole-brain imaging with single cell resolution

Apr 17, 2014

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Mauricio
not rated yet Dec 07, 2009
This is very, very, very old info, it has been know for a long while!

More news stories

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Study says we're over the hill at 24

(Medical Xpress)—It's a hard pill to swallow, but if you're over 24 years of age you've already reached your peak in terms of your cognitive motor performance, according to a new Simon Fraser University study.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.