System 97W's 'castle wall' breached, and opened up to dissipation

Dec 04, 2009
NASA and JAXA's Tropical Rainfall Measuring Mission (TRMM) satellite made an analysis of rainfall within System 97W on Dec. 3. It showed a very limited area of moderate rainfall. The yellow and green areas indicate rainfall between .78 to 1.57 inches per hour. Credit: NASA/SSAI, Hal Pierce

The "walls" of System 97W have been breached, and residents in the Western Pacific Ocean no longer have a tropical cyclone to worry about today. The Joint Typhoon Warning Center cancelled their "formation alert" for System 97W. System 97W is following in Nida's footsteps and is headed for dissipation. Nida has now officially dissipated.

Animated infrared satellite imagery from early today, December 4, showed that the same thing that happened with Nida has happened with System 97W: its low-level circulation center is now exposed. That means that outside influences like and dry air can work their way into System 97W's center and weaken it from the inside out.

Think of a tropical cyclone's center of circulation like a castle wall. Once it is breached, anything from the outside can enter and take over or destroy whatever is inside.

System 97W's open center is near 17.3 North latitude and 141.0 East longitude, about 310 nautical miles northwest of Guam. shows that the deepest convection (strongest thunderstorm activity) is to the north and northwest of the center, pushed there from wind shear.

The Measuring Mission (TRMM) Satellite, managed by NASA and the Japanese Space Agency flew over System 97W at 15:35 UTC yesterday (10:35 a.m. ET). At that time TRMM's data noticed that the low-level center of circulation was already becoming elongated (an indication that wind shear is stretching the storm, and skewing circulation), and the heavier rains were located from 60 to 120 nautical miles northwest of the storm's center.

This NASA Aqua satellite infrared image was taken from the Atmospheric Infrared Sounder instrument on Dec. 3 at 1653 UTC. It showed the end of Nida (top left) and System 97W already beginning to fade (lower right) as it appears stretched out. Credit: NASA JPL, Ed Olsen

The Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite captured an of 97W on Dec. 3 at 1653 UTC that showed System 97W was already elongated.

Not only is System 97W getting weakened from an open "wall" but it's also moving into an area where the wind shear is higher. The vertical wind shear speeds are between 25 and 35 knots (28-40 mph) from the south. Not only that, but there's a cold front approaching, too.

System 97W is expected to track to the north and fizzle as it encounters that cold front and high wind shear.

Source: JPL/NASA (news : web)

Explore further: Lightning plus volcanic ash make glass

add to favorites email to friend print save as pdf

Related Stories

Nida getting knocked by winds, and 97W piquing interest

Dec 02, 2009

Nida is now a tropical storm, and is being knocked around by wind shear in the Western Pacific. Satellite imagery has confirmed Nida's center of circulation is exposed and the storm is losing its circular ...

Recommended for you

Lightning plus volcanic ash make glass

11 hours ago

In their open-access paper for Geology, Kimberly Genareau and colleagues propose, for the first time, a mechanism for the generation of glass spherules in geologic deposits through the occurrence of volcan ...

A new level of earthquake understanding

16 hours ago

As everyone who lives in the San Francisco Bay Area knows, the Earth moves under our feet. But what about the stresses that cause earthquakes? How much is known about them? Until now, our understanding of ...

Combined Arctic ice observations show decades of loss

18 hours ago

It's no surprise that Arctic sea ice is thinning. What is new is just how long, how steadily, and how much it has declined. University of Washington researchers compiled modern and historic measurements to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.