Scientists discover gene module underlying atherosclerosis development

Dec 04, 2009

By measuring the total gene activity in organs relevant for coronary artery disease (CAD), scientists at the Swedish medical university Karolinska Institutet have identified a module of genes that is important for the recruitment of white blood cells into the atherosclerotic plaque. The findings, which are to be published in the open-access journal PLoS Genetics, suggest that targeting the migration of white blood cells in the development of atherosclerosis may help to reduce the risk for adverse clinical effects such as ischemia and myocardial infarction.

Atherosclerosis is the major cause of and stroke, and is responsible for half of all deaths in Sweden and other Western countries. Complications of atherosclerosis are rapidly increasing as a major cause of death also in developing countries; the World Health Organisation has predicted that this will become the number one killer by 2010.

"It has been an exciting research project, which has gone on for nearly seven years, involving many different disciplines from thoracic surgeons to mathematicians", says team leader Dr. Johan Björkegren at Karolinska Institutet in Stockholm. "I believe that this kind of clinical study will follow in the aftermath of the large number of ongoing genome-wide association studies."

Rather than individual or individual DNA variants, the discovery encompasses a group of 128 functionally related genes in a 'module' or 'network', which explains their mutual interactions. The involvement of most of these genes in CAD has not previously been known, but it has been known that they are involved in endothelial function and angiogenesis.

Through the collaboration with Dr. Eric Schadt's team at Washington University, Seattle, the researchers were also able to take advantage of previously published genome-wide association studies (GWAS) of CAD to show that the gene module they have discovered is enriched for inherited risk of developing myocardial infarction.

"The GWAS are genetic epidemiology studies often involving tens of thousands of patients and controls, originally designed to link isolated DNA locus to the risk of developing complex common disorders, such as atherosclerosis", says Dr Björkegren. "These studies now need to be complemented with clinical studies where the patients also are screened for intermediate molecular phenotypes in disease-relevant organs. The computational capacities and expertise required to address simultaneously all molecular activities and their relative risk-enrichment are available, all that remains is to start recruiting this kind of cohorts."

The findings suggest that the severity of atherosclerosis depends on the rate of the migration of from the blood into the atherosclerotic plaques. Although this pathway is already known to play a role in atherosclerosis, the Swedish findings suggest that it is the rate limiting step for disease progression. However, Dr Björkegren admits that the exact roles of all 128 genes in atherogenesis remain unexplained. Future studies will focus on understanding the details of how these genes actually contribute to atherosclerosis in cell cultures and animal model systems.

More information: 'Multi-Organ Expression Profiling Uncovers a Gene Module in Coronary Artery Disease Involving Transendothelial Migration of Leukocytes and LIM Domain Binding 2; The Stockholm Atherosclerosis Gene Expression (STAGE) Study', Sara Hägg, Josefin Skogsberg, Jesper Lundström, Peri Noori, Roland Nilsson, Hua Zhong, Shohreh Maleki, Ming-Mei Shang, Björn Brinne, Maria Bradshaw, Vladimir B. Bajic, Ann Samnegľrd, Angela Silveira, Lee M. Kaplan, Bruna Gigante, Karin Leander, Ulf de Faire, Stefan Rosfors, Ulf Lockowandt, Jan Liska, Peter Konrad, Rabbe Takolander, Anders Franco-Cereceda, Eric E. Schadt, Torbjörn Ivert, Anders Hamsten, Jesper Tegnér, and Johan Björkegren. , online publication, 3 December 2009, doi: 10.1371/journal.pgen.1000754

Source: Karolinska Institutet (news : web)

Explore further: Changes in scores of genes contribute to autism risk

add to favorites email to friend print save as pdf

Related Stories

Genes that protect against atherosclerosis identified

Mar 14, 2008

One way of combating atherosclerosis is to reduce levels of “bad cholesterol” in the blood. Scientists at the Swedish medical university Karolinska Institutet have now identified the genes that bring about this beneficial ...

Bad cholesterol inhibits the breakdown of peripheral fat

Nov 20, 2008

The so called bad cholesterol (LDL) inhibits the breakdown of fat in cells of peripheral deposits, according to a study from the Swedish medical university Karolinska Institutet. The discovery reveals a novel function of ...

Inflammation worsens danger due to atherosclerosis

Jan 22, 2009

Current research suggests that inflammation increases the risk of plaque rupture in atherosclerosis. The related report by Ovchinnikova et al, "T cell activation leads to reduced collagen maturation in atherosclerotic plaques ...

Genetic variation may lead to early cardiovascular disease

Jan 03, 2009

Researchers from Duke University Medical Center have identified a variation in a particular gene that increases susceptibility to early coronary artery disease. For years, scientists have known that the devastating, early-onset ...

Recommended for you

Changes in scores of genes contribute to autism risk

Oct 29, 2014

Small differences in as many as a thousand genes contribute to risk for autism, according to a study led by Mount Sinai researchers and the Autism Sequencing Consortium (ASC), and published today in the journal Nature.

Dozens of genes associated with autism in new research

Oct 29, 2014

Two major genetic studies of autism, led in part by UC San Francisco scientists and involving more than 50 laboratories worldwide, have newly implicated dozens of genes in the disorder. The research shows ...

Genetic link to kidney stones identified

Oct 29, 2014

A new breakthrough could help kidney stone sufferers get an exact diagnosis and specific treatment after genetic links to the condition were identified.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.