Scientists rescue visual function in rats using induced pluripotent stem cells

Dec 03, 2009
Dave Buchholz and Sherry Hikita stand in the Stem Cell Lab at University of California - Santa Barbara. Credit: George Foulsham, Office of Public Affairs, UCSB

An international team of scientists has rescued visual function in laboratory rats with eye disease by using cells similar to stem cells. The research shows the potential for stem cell-based therapies to treat age-related macular degeneration in humans.

A team led by Dennis Clegg, of UC Santa Barbara, and Pete Coffey, of University College London (UCL), published their work in two papers, including one published this week in the journal . The first paper was published in the October 27 issue of the journal .

The scientists worked with rats that have a mutation which causes a defect in retinal pigmented epithelial (RPE) cells and leads to photoreceptor death and subsequent blindness. Human RPE cells were derived from induced -- embryonic stem cell-like cells that can be made from virtually any cell in the body, thus avoiding the controversy involved in using stem cells derived from embryos. Pluripotent means that the cells can become almost any cell in the body.

In experiments spearheaded by UCL's Amanda Carr, the team found that by surgically inserting stem cell-derived RPE into the retinas of the rats before photoreceptor degeneration, vision was retained. They found that the rats receiving the transplant tracked their visual focus in the direction of moving patterns more efficiently than control groups that did not receive a transplant.

"Although much work remains to be done, we believe our results underscore the potential for stem-cell based therapies in the treatment of age-related macular degeneration," said Sherry Hikita, an author on both papers and director of UCSB's Laboratory for Stem Cell Biology.

Dave Buchholz, first author of the article in Stem Cells, explained that by using induced stem cells that can be derived from patients, the scientists avoid that might occur when using .

According to Buchholz, "RPE cells are essential for visual function. Without RPE, the rod and cone photoreceptors die, resulting in blindness. This is the basic progression in age-related macular degeneration. The hope is that by transplanting fresh RPE, derived from induced pluripotent stem cells, the photoreceptors will stay healthy, preventing vision loss."

Source: University of California - Santa Barbara (news : web)

Explore further: Scientists tap trees' evolutionary databanks to discover environment adaptation strategies

add to favorites email to friend print save as pdf

Related Stories

New study hopeful on neural stem cells

Aug 05, 2006

Neural stem cells derived from federally approved human embryonic cells are inferior to stem cells derived from donated fetal tissue, a new study found.

Study: Skin cells turned into stem cells

Aug 22, 2005

The controversy over embryonic stem cell research may become moot with a procedure that turns skin cells into what appear to be embryonic stem cells.

Recommended for you

How a white rot tackles freshly-cut food

Dec 23, 2014

Researchers sequenced and analyzed the white rot fungus Phlebiopsis gigantea, which can break down fresh-cut conifer sapwood. They also sequenced and analyzed the set of P. gigantea's secreted proteins (secretome) ...

Bacteria could be rich source for making terpenes

Dec 23, 2014

If you've ever enjoyed the scent of a pine forest or sniffed a freshly cut basil leaf, then you're familiar with terpenes. The compounds are responsible for the essential oils of plants and the resins of ...

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.