2 heads better than 1 in new antibiotic method

Dec 03, 2009

An antibiotic that binds to a well-established target in a novel and unexpected way could be the inspiration for designing new, more potent antibacterial drugs.

"A completely new way to beat is an exciting find at a time when resistance to existing antibiotics is growing," said Professor Tony Maxwell from the John Innes Centre, lead author on the research to be published in Science. JIC is an institute of the BBSRC.

The antibiotic molecule slots into pockets in the surface of a , DNA gyrase, and inhibits its activity. Gyrase is essential for bacteria to survive and grow. However, it is not present in humans so is an ideal, and already established, target for antibiotics.

"If you can knock out this enzyme, you have a potential new drug," says Prof Maxwell.

The molecule has two heads that dock into separate pockets in DNA gyrase, and together they are 100 times more powerful than when working individually. Neither pocket has previously been exploited by antibacterial drugs that target this enzyme. Although bacteria could develop resistance to this mode of action, it might be occur less readily than with other .

"The fact that there are two pockets means that it might require simultaneous mutations in both pockets for the bacteria to acquire full resistance to the drug, which is much less likely," explains Professor Maxwell.

"You could say that this is a case of two heads being better than one."

The antibiotic molecule, simocyclinone D8 (SD8), is a currently unexploited natural product made by soil bacteria. SD8 itself does not easily penetrate bacterial cells, but it raises the possibility of finding other molecules that fit into the binding pockets, or designing molecules that work by this mechanism but that penetrate cells more easily.

The current method of discovery is to screen protein targets or bacteria against vast libraries of compounds. Any hits are investigated in more detail.

The research reported in Science is a big advance as the scientists already know in detail how the molecule works. It can now be modified, or new compounds developed, to design new drugs.

Source: Norwich BioScience Institutes

Explore further: Study hints at antioxidant treatment for high blood pressure

add to favorites email to friend print save as pdf

Related Stories

Energy-saving bacteria resist antibiotics

Sep 03, 2008

Bacteria save energy by producing proteins that moonlight, having different roles at different times, which may also protect the microbes from being killed. The moonlighting activity of one enzyme from the tuberculosis bacterium ...

The structure of resistance

Feb 22, 2008

A team of scientists from the University Paris Descartes has solved the structure of two proteins that allow bacteria to gain resistance to multiple types of antibiotics, according to a report in EMBO reports this month. ...

Decoy makes sitting duck of superbugs

Dec 04, 2007

Scientists from the John Innes Centre have proven that by taking a short stretch of DNA from a bacterium and delivering it with an existing antibiotic they can switch off antibiotic resistance.

Recommended for you

Stem cells faulty in Duchenne muscular dystrophy

1 hour ago

Like human patients, mice with a form of Duchenne muscular dystrophy undergo progressive muscle degeneration and accumulate connective tissue as they age. Now, researchers at the Stanford University School of Medicine have ...

Here's how the prion protein protects us

6 hours ago

The cellular prion protein (PrPC) has the ability to protect the brain's neurons. Although scientists have known about this protective physiological function for some time, they were lacking detailed knowledge ...

Regulation of maternal miRNAs in early embryos revealed

7 hours ago

The Center for RNA Research at the Institute for Basic Science (IBS) has succeeded in revealing, for the first time, the mechanism of how miRNAs, which control gene expression, are regulated in the early embryonic stage.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.