Oceanic crust formation is dynamic after all

Nov 25, 2009
A research team led by Brown University studied seismic velocities -- the speed of seismic waves -- in the Gulf of California to determine that a geological phenomenon known as dynamic upwelling occurs in the Earth's mantle as oceanic crust is formed. Credit: Yun Wang, Brown University

Imagine the Earth's crust as the planet's skin: Some areas are old and wrinkled while others have a fresher, more youthful sheen, as if they had been regularly lathered with lotion.

Carry the metaphor a little further and a good picture emerges of the geological processes leading to the creation of the planet's crust. On land, continental crust, once created, can remain more or less unaltered for billions of years. But the oldest is only about 200 million years old, as new crust is continually forming at mid-ocean ridge spreading centers.

While geologists have known that oceanic crust continually replenishes itself, they have been unsure what occurs below the surface that leads to the resurfacing. What geodynamics are occurring in the mantle that eventually produces new crust, that new layer of skin on the ocean's bottom?

The answer has been elusive in part because oceanic crust is difficult to reach and instruments that can measure seismic activity have not fully covered the terrain to obtain an accurate picture of forces below the surface. Now earth scientists led by Brown University have observed — in detail and at unprecedented depths — a geological phenomenon known as dynamic upwelling in the underlying mantle beneath a spreading center. Their findings, reported in this week's Nature, may resolve a longstanding debate regarding the relative importance of passive and dynamic upwelling in the shallow mantle beneath spreading centers on the .

"We know the crust of the ocean is produced by upwelling beneath separating plates," said Don Forsyth, professor of geological sciences at Brown. "We just didn't know the upwelling pattern that took place, that there are concentrated upwelling centers rather than uniform upwelling."

Mantle upwelling and melting beneath spreading centers has been thought to be mostly a passive response to the separating oceanic plates above. The new finding shows there appears to be a dynamic component as well, driven by the buoyancy of melt retained in the rock or by the lighter chemical composition of rock from which melt has been removed.

The scientists from Brown and the University of Rhode Island based their findings on a high-resolution seismic study in the Gulf of California. In that region, there are 25 seismometers spaced along the western coast of Mexico and the Baja California peninsula, which lie on either side of the Gulf of California. Yun Wang, a Brown graduate student and the paper's lead author, tracked the velocity of seismic waves that traveled from one station to another. She noticed a pattern: The seismic waves in three localized centers, spaced about 250 kilometers (155 miles) apart, traveled more slowly than waves in the surrounding mantle, implying the presence of more melt in the localized centers and thus a more vigorous upwelling. From that, the geologists determined the centers, located 40-90 kilometers (25 to 56 miles) below the surface, showed evidence of dynamic upwelling in the mantle.

"We found a pattern that was predicted by some of the theoretical models of upwelling in mid-oceanic ridges," Forsyth said.

While other studies have been done of mantle geodynamics, most notably an experiment on the East Pacific Rise, the Brown-URI study imaged seismic activity, or the shear velocity of the seismic waves, some 200 kilometers (124 miles) below the surface — a far deeper seismic penetration into the mantle than previous experiments.

Brian Savage, assistant professor of geophysics at the University of Rhode Island and a contributing author on the paper, said the finding is important, because it helps to provide "a basic understanding of how a majority of the earth's crust is formed, how it emerges from the mantle below to create the oceanic crust. It's a basic science question that helps understand how crust is created."

Source: Brown University (news : web)

Explore further: Scientists monitoring Hawaii lava undertake risks

add to favorites email to friend print save as pdf

Related Stories

The great recycler -- planet Earth

Jun 09, 2007

In the current edition of leading science journal Nature, an international team of researchers publishes proof that the Earth recycles portions of its own crust, driving it deep down into the mantle of the ...

Diamonds show how Earth is recycled

Jul 30, 2008

(PhysOrg.com) -- Tiny minerals found inside diamonds have provided us with a rare glimpse of the Earth’s deepest secrets. This exciting new research by a team of scientists, led by the University of Bristol, ...

Slab of sunken ocean floor found deep within Earth

May 17, 2006

Deep within Earth, halfway to its center in an area where Earth's core meets its mantle, lies a massive folded slab of rock that once was the ocean floor, reports a team of researchers in the current issue of Nature.

Recommended for you

Scientists monitoring Hawaii lava undertake risks

3 hours ago

New photos from the U.S. Geological Survey's Hawaiian Volcano Observatory give a glimpse into the hazardous work scientists undertake to monitor lava that's threatening to cross a major highway.

NASA sees Odile soaking Mexico and southwestern US

14 hours ago

Tropical Storm Odile continues to spread moisture and generate strong thunderstorms with heavy rainfall over northern Mexico's mainland and the Baja California as well as the southwestern U.S. NASA's Tropical ...

NASA sees Tropical Storm Polo intensifying

14 hours ago

Tropical storm warnings now issued for a portion of the Southwestern coast of Mexico as Polo continues to strengthen. Infrared imagery from NASA's Aqua satellite showed powerful thunderstorms around the center ...

User comments : 0