Invention will help speed development of drug treatments for heart failure

Nov 23, 2009

Research conducted by University of Minnesota scientists, in collaboration with Celladon Corporation, has led to the invention of technology to more rapidly identify compounds for the treatment of heart failure.

Chronic heart failure is an increasingly important health problem. It is the leading medical cause of hospitalization and is expected to result in an estimated direct and indirect cost to the health care system of $37.2 billion in 2009 alone. About 5.7 million people in the United States have heart failure, and it contributes to or causes some 290,000 deaths annually. However, developing new treatments is an extremely costly and time-consuming process, taking nearly a decade to gain regulatory approval and requiring hundreds of millions of dollars.

The technology, developed by the universitys David Thomas and Razvan Cornea and Celladon Corporations Krisztina Zsebo, allows for increased screening efficiency of compounds capable of disrupting the interactions of proteins implicated in the development of heart failure. (FRET) is used to measure disruption of the calcium regulatory system, which has long been implicated in cardiovascular disease. This will provide key information on a particular drugs likelihood of success early in the screening process, since compounds that decrease FRET are good candidates for further development.

"Dr. Cornea and I, along with our students, have worked for more than a decade developing methods for preparing membranes from purified components, and using FRET to detect changes in protein interactions," Thomas said. "Scientists from Celladon saw the potential for drug discovery, and this resulted in a breakthrough that has added an exciting new dimension to our research program."

The high-throughput assay, developed by the university team, is based on a reconstituted membrane system composed of purified lipid and protein components. This technique is especially important because the interactions of integral membrane proteins are more complex than soluble proteins, making it very difficult to produce a synthetic system that recapitulates the cellular interactions in a large-scale and reproducible manner.

Celladon, based in La Jolla, Calif., has acquired an exclusive license for the technology from the University of Minnesota for the development of molecular therapies for cardiovascular diseases. Celladon also provided funding for the research that allowed Thomas to further refine the assay.

"This technology is very important to the efficient selection and advancement of compounds with the potential to increase cardiac contractility and potentially accelerates product opportunities that will ultimately benefit patients and development partners alike," said Krisztina M. Zsebo, Ph.D., president and chief executive officer of Celladon Corporation. "Celladon's investigation and development of first-in-class CDN small molecules as intravenous and oral drugs for the treatment of acute and chronic sets us apart in the cardiovascular field and presents multiple partnering opportunities."

Source: University of Minnesota (news : web)

Explore further: Biologists reprogram skin cells to mimic rare disease

add to favorites email to friend print save as pdf

Related Stories

Heart failure treated 'in the brain'

Mar 25, 2008

Beta-blockers heal the heart via the brain when administered during heart failure, according to a new study by UCL (University College London). Up to now, it was thought that beta-blockers work directly on the heart, but ...

New heart failure device is tested

Oct 17, 2006

Physicians at 50 U.S. medical facilities are taking part in a multinational clinical trial of a device designed to help heart failure victims.

The beat goes on with AKAP18

Sep 28, 2007

A protein, known as AKAP18, could help the heart to beat faster in response to adrenaline or noradrenaline, according to a study published online this week in EMBO reports.

Recommended for you

Biologists reprogram skin cells to mimic rare disease

2 hours ago

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

Student seeks to improve pneumonia vaccines

Aug 20, 2014

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

Aug 20, 2014

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

User comments : 0