Dutch researchers make breakthrough in bioethanol production from agricultural waste

Nov 20, 2009

With the introduction of a single bacterial gene into yeast, researchers from Delft University of Technology in the Netherlands achieved three improvements in bioethanol production from agricultural waste material: 'More ethanol, less acetate and elimination of the major by-product glycerol' This week the invention was published in the scientific journal Applied and Environmental Microbiology.

Bioethanol is made by the yeast from sugars obtained from plant biomass. This microorganism also converts such sugars into ethanol (alcohol) in beer and wine. The production of bioethanol is rapidly increasing due to the growing use of bioethanol as a car fuel. With an annual world production of 65 billion liters, bioethanol is aready the largest product of the fermentation industry

Bioethanol should of course preferably be produced from resources that do not compete with food production. For this reason, efforts are made to produce second-generation bioethanol, using agricultural residues such as wheat straw and corn stover. However, when the sugars from these raw materials are released, significant quantities of are formed. Acetate can slow down or even halt bioethanol production by yeast.

Another challenge of the current bioethanol production process is that about 4% of the sugar is lost to formation of the byproduct glycerol. Glycerol formation was long considered to be an inevitable consequence of the production conditions during bioethanol production.

TU Delft researchers have now solved these issues. Yeast can, at least in theory, also convert the harmful acetate to ethanol. As it turns out, just one single gene is missing in the yeast. By introducing a single gene from the bacterium Escherichia coli, researchers of the Netherlands-based Delft University of Technology and the Kluyver Centre for Genomics of Industrial enabled this conversion of acetate to ethanol by yeast. This replaced the normal role of glycerol so efficiently that key genes in glycerol production could be removed, thus completely abolishing glycerol production.

The invention is enthusiastically summarized by the principal researcher Jack Pronk: 'In the laboratory, this simple genetic modification kills three birds with one stone: no formation, higher ethanol yields and consumption of toxic acetate'.

For the potential billion liter gain to be realized, follow-up research on the transfer of this concept to industrial yeast strains and real-life process conditions is required. The Delft researchers, who applied for a patent on their invention, hope to intensively collaborate with industrial partners to accelerate its industrial implementation.

Source: Delft University of Technology (news : web)

Explore further: Team publishes evidence for natural alternative to antibiotic use in livestock

add to favorites email to friend print save as pdf

Related Stories

Producing bio-ethanol from agricultural waste a step closer

Jun 07, 2006

Research conducted by Delft University of Technology has brought the efficient production of the environmentally-friendly fuel bio-ethanol a great deal closer to fruition. The work of Delft researcher Marko Kuyper was an ...

Magnets can boost production of ethanol for fuel

Sep 10, 2007

In a finding that could reduce the cost of ethanol fuel, researchers in Brazil report success in using low frequency magnetic waves to significantly boost the amount of ethanol produced through the fermentation of sugar. ...

Researchers Create First Synthetic Cellulosome in Yeast

Oct 29, 2009

(PhysOrg.com) -- A team of researchers led by University of California, Riverside (UCR) Professor of Chemical Engineering Wilfred Chen has constructed for the first time a synthetic cellulosome in yeast, which is much more ...

Recommended for you

Researchers capture picture of microRNA in action

Oct 30, 2014

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

Oct 30, 2014

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

Oct 30, 2014

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

Oct 30, 2014

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.