Bone Implant Offers Hope for Skull Deformities

Nov 19, 2009

(PhysOrg.com) -- A synthetic bone matrix offers hope for babies born with craniosynostosis, a condition that causes the plates in the skull to fuse too soon. Implants replacing some of the infant’s bone with the biodegradable matrix could eliminate some of the operations currently used to treat the condition.

“The remarkable thing about this is the finding that the composition of the matrix changes what the around it do. Cells begin producing natural drugs to drive bone healing in direct response to the composition of the bone matrix,” said Kent Leach, professor of at UC Davis.

The material is currently being tested in experiments with rats. Human trials will depend upon the success of tests in animals.

The human is not a smooth dome, but a patchwork of fused bones that resembles a soccer ball rather than an egg. At birth, the skull contains 45 separate pieces, joined by , that slowly fuse together into solid bone. In most babies, this process keeps pace with brain growth, resulting in a normally shaped head.

However, one in every 2,000 babies is born with craniosynostosis, where the plates fuse and the skull becomes rigid. This leaves less room for the brain to grow, leading to developmental disabilities, and cranial and facial deformities.

In the standard surgery, surgeons remove fused bones, break them up and reposition some of the pieces along the edges to protect the brain. This usually slows the and allows the brain to grow. Nevertheless, 6 to 8 percent of babies will need a second operation and 25 percent of those will need yet a third operation.

Leach believes that the environment surrounding the cells might be sending the wrong instructions, causing cells to grow wrong. Leach’s biodegradable implant is impregnated with from and a synthetic version of hydroxyapatite, a chemical produced naturally in the body to stimulate bone growth. Once implanted, bone-forming cells enter the matrix. Leach’s research with rats shows dense connective tissue, suggestive of bone formation, only eight weeks after implantation.

Leach hopes that his new matrix will encourage the growth of healthy tissue and eliminate the need for second and third surgeries. “The matrix will resorb over time, leaving only the child’s own bone,” he said.

Provided by UC Davis (news : web)

Explore further: Scientists 1 step closer to cell therapy for multiple sclerosis patients

add to favorites email to friend print save as pdf

Related Stories

Hydrogels provide scaffolding for growth of bone cells

Aug 17, 2008

Hyaluronic hydrogels developed by Carnegie Mellon University researchers may provide a suitable scaffolding to enable bone regeneration. The hydrogels, created by Newell Washburn, Krzysztof Matyjaszewski and Jeffrey Hollinger, ...

Carbon Nanotubes Help Fix Bones

Mar 14, 2008

Healing a broken bone is a lengthy and awkward process. The current, most effective way to repair bone tissue is to ensure correct positioning of the bone during healing, usually by use of a plaster cast or ...

3-D research model tackles prostate cancer spread

Apr 24, 2009

Shirly Sieh, a PhD student at IHBI, is studying the way cancer cells escape from the prostate through the bloodstream to form tumour colonies, most often in the spine and long bones.

Researchers grow bone cells on carbon nanotubes

Mar 15, 2006

Researchers at the University of California, Riverside have published findings that show, for the first time, that bone cells can grow and proliferate on a scaffold of carbon nanotubes.

Recommended for you

New technology allows hair to reflect almost any color

9 hours ago

What if you could alter your hair to reflect any color in the spectrum? What if you could use a flatiron to press a pattern into your new hair color? Those are possibilities suggested by researchers from ...

User comments : 0