World's first delivery of intra-arterial Avastin directly into brain tumor

Nov 17, 2009

Neurosurgeons from NewYork-Presbyterian Hospital/Weill Cornell Medical Center performed the world's first intra-arterial cerebral infusion of Avastin (bevacizumab) directly into a patient's malignant brain tumor. This novel intra-arterial (IA) technique may expose the cancer to higher doses of the drug therapy, while possibly sparing the patient common side effects of receiving the drug intravenously (IV) or throughout their body.

The investigative procedure -- called super selective intra-arterial cerebral infusion of -- has been successfully performed on five patients with promising results. Details of the first case are scheduled for publication in the next issue of Journal of and Oncology.

The researchers are currently enrolling patients for the Phase I study, which will test the safety and tolerability of this new method of drug delivery. If proven successful, NewYork-Presbyterian/Weill Cornell physician-scientists believe that this promising method may one day offer patients a new and better therapy for glioblastoma multiforme (GBM), a common type of brain cancer that has not responded well to currently available therapies. In addition, the authors believe that this technique may herald the birth of a new field of "interventional neuro-oncology."

"We believe that infusing Avastin directly via the cerebral arteries deep into the site of the brain tumor may help to kill off the cancer cells hiding within the tumor and adjacent brain tissue," explains co-author and study co-principal investigator (PI) Dr. John A. Boockvar, associate professor of neurological surgery at Weill Cornell Medical College and director of the brain tumor research laboratory at NewYork-Presbyterian Hospital/Weill Cornell Medical Center.

"We are combining the latest in drug treatment with a revolutionary delivery technique, which could potentially be more effective than currently available treatments," says co-author and co-PI, Dr. Howard Riina, co-director of interventional neuroradiology at NewYork-Presbyterian Hospital/Weill Cornell Medical Center and associate professor of neurological surgery, neurology and radiology at Weill Cornell Medical College.

Because of the blood-brain barrier (BBB), which prevents many IV-administered drugs from penetrating the blood vessel walls sufficiently in order to get into the brain, no one knows for sure if current drugs actually get into the brain after IV infusion.

"This new technique may be a way to get through that barrier and deliver higher doses of drug to the tumor with less toxicity to the patient," says Dr. Boockvar.

To deliver the drug, neurosurgeons direct a hair-thin microcatheter through blood vessels in the body, via the carotid artery running up the neck, and then into the smaller arteries deep in the brain. Upon arriving at the tumor site, a drug to open the blood-brain barrier is injected. After the BBB is temporarily opened -- a window of time lasting approximately five minutes -- the chemotherapeutic agent Avastin is injected directly into the malignant tumor.

Participants in the trial will be given varying doses of the drug in order to test which dose is best tolerated. Following this Phase I trial, the researchers plan to immediately begin a Phase II trial to test the technique's efficacy.

"This potential new drug delivery system demonstrates translational research from the Brain and Spine Center of NewYork-Presbyterian Hospital/Weill Cornell Medical Center at its best," says Dr. Philip E. Stieg, chairman of neurological surgery at Weill Cornell Medical College and neurosurgeon-in-chief at NewYork-Presbyterian/Weill Cornell. "If proven successful, it is a promising move forward for patients dealing with resistant brain tumors."

The current standard of care is to give patients with GBM the drug bevacizumab (Avastin) intravenously (IV) -- delivering the drug directly into a vein. The drug works by slowing the growth of new blood vessels within tumors, cutting off the life-giving blood and then causing the cancer cells to die. In May 2009, the FDA approved Avastin for the treatment of GBM.

Source: New York- Presbyterian Hospital (news : web)

Explore further: Researchers explain cancer-destroying compound in extra virgin olive oil

add to favorites email to friend print save as pdf

Related Stories

Cancer stem cells: know thine enemy

Dec 21, 2007

Stem cells -- popularly known as a source of biological rejuvenation -- may play harmful roles in the body, specifically in the growth and spread of cancer. Amongst the wildly dividing cells of a tumor, scientists have located ...

Gene therapy slows progression of Batten Disease

Jun 02, 2008

Gene therapy that helps defective brain cells get rid of "garbage" appears both safe and effective at slowing down Batten disease, according to promising findings from NewYork-Presbyterian Hospital/Weill Cornell Medical Center.

Radiation before surgery improves pancreatic cancer outcomes

Nov 25, 2008

Pancreatic cancer is one of the deadliest and most difficult to treat cancers. Now, in a major step forward, researchers at NewYork-Presbyterian Hospital/Weill Cornell Medical Center have shown that administering radiation ...

Recommended for you

US women's awareness of breast density varies

14 hours ago

Disparities in the level of awareness and knowledge of breast density exist among U.S. women, according to the results of a Mayo Clinic study published in the Journal of Clinical Oncology.

Study shows why some brain cancers resist treatment

14 hours ago

Scientists at The University of Texas MD Anderson Cancer Center may have discovered why some brain cancer patients develop resistance to standard treatments including radiation and the chemotherapy agent temozolomide.

Researchers identify genes responsible for lung tumors

16 hours ago

The lung transcription factor Nkx2-1 is an important gene regulating lung formation and normal respiratory functions after birth. Alterations in the expression of this transcription factor can lead to diseases such as lung ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.