Spotting evidence of directed percolation

Nov 17, 2009
This is an illustration of directed percolation in 1+1 dimensions: Activity percolates through open bonds (red lines), activating nearest neighbors and giving rise to a cluster of activity. Credit: Illustration: Alan Stonebraker

A team of physicists has, for the first time, seen convincing experimental evidence for directed percolation, a phenomenon that turns up in computer models of the ways diseases spread through a population or how water soaks through loose soil. Their observation strengthens the case for directed percolation's relevance to real systems, and lends new vigor to long-standing theories about how it works. Their experiment is reported in Physical Review E and highlighted with a Viewpoint in the November 16 issue of Physics.

While directed percolation models are handy for describing things as diverse as sand flow and dynamics in cells, no one had managed to find clear, reproducible evidence of the phenomenon in a controlled experiment.

Now a team of physicists from the University of Tokyo, in Japan, and CEA-Saclay, in France, have seen directed percolation in a layer of liquid crystals about a hundredth of a millimeter thick sandwiched between two glass plates connected to electrodes. When they increased the voltage above a threshold, they saw gray spots appearing. A spot could disappear spontaneously but also cause spots to pop up around it, similar to the way a virus can die in one individual after infecting people nearby. The team showed that the system exhibited many of the mathematical hallmarks of directed percolation—convincing evidence that the long-theorized phenomenon occurs in real systems.

More information: Experimental realization of directed percolation criticality in turbulent liquid crystals, Kazumasa A. Takeuchi, Masafumi Kuroda, Hugues Chaté, and Masaki Sano, Phys. Rev. E 80, 051116 (2009) - Published November 16, 2009, Download PDF (free)

Source: American Physical Society

Explore further: Finding faster-than-light particles by weighing them

add to favorites email to friend print save as pdf

Related Stories

Making monster waves

Oct 19, 2009

Rogue waves -- giant waves that spring up suddenly and tower over the seas around them—have inspired physicists to look for an analogue in light. These high-intensity pulses can cross large distances without ...

Slipper-shaped blood cells

Oct 26, 2009

Red blood cells, which make up 45 percent of blood, normally take the shape of circular cushions with a dimple on either side. But they can sometimes deform into an asymmetrical slipper shape. A team of physicists ...

Flipping a photonic shock wave

Nov 02, 2009

A team of physicists has directly observed a reverse shock wave of light in a specially tailored structure known as a left-handed metamaterial. Although it was first predicted over forty years ago, this is ...

Growing geodesic carbon nanodomes

Oct 12, 2009

Researchers analyzing the assembly of graphene (sheets of carbon only one atom thick) on a surface of iridium have found that the sheets grow by first forming tiny carbon domes. The discovery offers new insight ...

Recommended for you

Finding faster-than-light particles by weighing them

Dec 26, 2014

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

Acoustic tweezers manipulate cell-to-cell contact

Dec 22, 2014

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.