Engineer Discovers Why Particles Like Flour Disperse on Liquids

Nov 16, 2009

(PhysOrg.com) -- Even if you are not a cook, you might have wondered why a pinch of flour (or any small particles) thrown into a bowl of water will disperse in a dramatic fashion, radiating outward as if it was exploding. Pushpendra Singh, PhD, a mechanical engineering professor at NJIT who has studied and written about the phenomenon, has not only thought about it, but can explain why.

He says that what’s known as the repulsive hydrodynamic force arising from the of causes them to disperse. A particle trapped in a liquid surface vibrates up and down from its equilibrium position on the surface, or interface, where air meets water. When many particles do this simultaneously, an explosive dispersion occurs.

Singh will speak more about his theory in Minneapolis at the upcoming 62nd annual meeting on Nov. 23, 2009 of the Division of of the American Physical Society.

The talk will include highlights from his recent article “Spontaneous Dispersion of Particles on Liquid Surfaces,” which appeared in the Nov. 11, 2009 early edition of the .

Singh says that when small particles, such as flour or pollen, come in contact with a liquid surface, they immediately disperse and form a . The dispersion occurs so quickly that it appears explosive, especially on the surface of liquids like water.

This explosive dispersion is a consequence of the capillary force pulling particles towards their equilibrium positions in the interface. The capillary force causes the particles to accelerate very rapidly.

“If a particle barely touches the interface, it is pulled onto the surface,” said Singh. “For example, if the contact angle for a spherical particle is 90 degrees, it floats in the state of equilibrium so that one-half of it is above the surface and the remaining half is below. If the particle, however, is not in this position, the capillary force will force it to be.”

What’s interesting is that the smaller the particles, the faster they move. For nanometer-sized particles like viruses and proteins, the velocity or speed on an air-water interface can be as high as 167 kilometers (about 100 miles) per hour.

Singh says the motion of the particles is dominated by inertia because the viscous damping—which is like friction—is too small. He compares the situation to a moving pendulum. “The pendulum will oscillate many times before friction makes it stop,” he says. “If friction is too great, it won’t oscillate.”

Eventually, the particles which have been oscillating around their equilibrium point will stop—thanks to viscous drag which causes resistance to the motion.

“Let me explain more about viscous drag,” said Singh. “When a body, such as a ball, moves through air or liquid, it will resist the motion. This resistance is caused by viscous drag. Or look at it this way. When a particle is adsorbed at a surface, it acquires a part of the released interfacial energy as kinetic energy,” he says. “The particle dissipates this kinetic energy by oscillating from its equilibrium height in the interface. The act gives rise to repulsive hydrodynamic forces, the underlying cause of why particles disperse.”

Provided by New Jersey Institute of Technology

Explore further: With neutrons, scientists can now look for dark energy in the lab

add to favorites email to friend print save as pdf

Related Stories

Microswimmer propels itself with near-zero friction

Jun 04, 2007

Scientists have found that a very slender micro-sized swimmer can propel itself without friction by surface treadmilling. The microswimmer moves by generating backward surface motion at the front end of itself, which is then ...

Nano-particle dispersion technique improves polymers

Aug 29, 2005

Supercritical fluid carbon dioxide used; melt properties provide monitor There is a lot of excitement about incorporating nano particles into polymers because of the ability to improve various properties with only a small per ...

Recommended for you

How to test the twin paradox without using a spaceship

6 hours ago

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

dmcl
not rated yet Nov 16, 2009
so in essence, they ride the waves until the dispersion is uniform?
Alexa
not rated yet Nov 17, 2009
Here you can find many videos from these experiments

http://www.aem.um...rticles/

More news stories

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...