Investigating muscle repair, scientists follow their noses

Nov 16, 2009
Mouse muscle fibers are stained to reveal the presence of MOR23 in red. Cell nuclei appear as blue. Credit: Christine Griffin

When muscle cells need repair, they use odor-detecting tools found in the nose to start the process, researchers have discovered.

The results are published online and scheduled for publication in the November issue of the journal Developmental Cell.

Found on the surfaces of neurons inside the nose, odorant receptors are molecules that bind and respond to substances wafting through the air. Researchers have shown that one particular odorant receptor gene, MOR23, is turned on in undergoing repair.

"Normally MOR23 is not turned on when the tissue is at rest, so we wouldn't have picked it up without looking specifically at muscle injury," says Grace Pavlath, PhD, professor of pharmacology at Emory University School of Medicine. "There is no way we would have guessed this."

Interfering with MOR23 inhibits muscle cells' ability to migrate, stick to each other and form long fibers, Pavlath and her colleagues showed. In addition, MOR23 is the first molecule found to influence the process of myofiber branching, a form of degeneration seen in muscular dystrophies and aging.

The finding could lead to new ways to treat muscular dystrophies and muscle wasting diseases, and also suggests that odorant receptors may have additional unexpected functions in other tissues.

The that renew are called . Several years ago, Pavlath observed that MOR23 was turned on when mouse satellite cells were fusing to form extended muscle fibers in culture. At the same time, graduate student Christine Griffin noticed a Japanese report that MOR23 is also turned on in sperm cells and influences their migration.

"At first glance, our result seemed like a fluke," Pavlath says. "Because Christine was writing a mock grant on MOR23 in sperm for a class assignment, we decided it would be fun to explore MOR23's function in muscle. It mushroomed from there."

MOR23 responds to lyral, a fragrance ingredient in many cosmetics that smells like lily-of-the-valley. Although Griffin could show that muscle cells migrate towards lyral, this doesn't mean muscles in the body use the same chemical.

Pavlath says that the molecule the body uses to direct muscle repair through MOR23 is present in an extract from crushed muscle cells.

"When you squish the cells, it leaks out - or an enzyme releases it," she says.

The human genome contains around 400 genes encoding odorant receptors, and mice have more than 900. It is not clear what the MOR23 equivalent is in humans, or whether the odorant receptors that respond to lyral in humans are also involved in muscle repair.

The team's results raise a number of intriguing questions about what odorant receptors do in muscle tissue. Pavlath says she wants to identify the molecule in the body that activates MOR23 and investigate what jobs other odorant receptors perform in muscle.

"There is a tremendous variation in humans as far as what odors individuals can recognize," she says. "Could this be linked somehow to differences in the ability to repair muscle?"

Source: Emory University (news : web)

Explore further: Scientists find key to te first cell differentiation in mammals

add to favorites email to friend print save as pdf

Related Stories

Team identifies stem cells that repair injured muscles

Mar 05, 2009

A University of Colorado at Boulder research team has identified a type of skeletal muscle stem cell that contributes to the repair of damaged muscles in mice, which could have important implications in the treatment of injured, ...

Potential therapy for congenital muscular dystrophy

Dec 30, 2008

Current research suggests laminin, a protein that helps cells stick together, may lead to enhanced muscle repair in muscular dystrophy. The related report by Rooney et al, "Laminin-111 restores regenerative capacity in a ...

Recommended for you

Research helps identify memory molecules

5 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

6 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

6 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0