In touch with molecules

Nov 12, 2009
Copyright: CAU

The performance of modern electronics increases steadily on a fast pace thanks to the ongoing miniaturization of the utilized components. However, se-vere problems arise due to quantum-mechanical phenomena when conven-tional structures are simply made smaller and reach the nanometer scale. Therefore current research focuses on the so-called bottom-up approach: the engineering of functional structures with the smallest possible building blocks - single atoms and molecules.

For the first time a collaboration of researchers across Europe now achieved to investigate the electrical behaviour of only two C60 touching each other. The molecule which is shaped like a football was discovered in 1985 and since then has attracted tremendous attention by researchers all over the world due to its unique chemistry and potential technological applications in nano-technology, materials science and electronics.

The findings of the researchers from institutes in Germany, France, Spain and Denmark were published in the latest issue of the prestigious magazine . A scanning tunnelling microscope (STM) was used to con-struct an ultra small comprised of only two C60 molecules, each just 1 nanometer in diameter. The researchers first picked up a single C60 mole-cule with the STM tip and thereafter approached a second molecule with a pre-cision of a few trillionths of meters. During this controlled approach the physi-cists were able to measure the that flows between the two molecules. Understanding this current, which depends critically on the distance between the molecules, is important for utilizing molecules in future electronics.

The investigation revealed that the electrical current does not flow easily be-tween the two touching C60 molecules - the conductance is 100 times smaller than for a single molecule. This finding is crucial for future devices with closely packed molecules as it indicates that leakage currents between neighbouring circuits will be controllable.

These experimental findings are strongly supported by quantum-mechanical calculations which too come to the result of poor electrical conductivity between two C60 molecules.

The extreme precision of manipulation and control of single molecules pre-sented in this work open up a new route for exploring other promising mole-cules. The deeper understanding of electrical current on the nanometer scale is an essential step towards novel molecular nanoelectronics.

More information: PRL 103, 206803 (2009), DOI: 10.1103/PhysRevLett.103.206803

Source: Kiel University

Explore further: World's smallest propeller could be used for microscopic medicine

add to favorites email to friend print save as pdf

Related Stories

Molecules that suck

Nov 21, 2005

The interaction between the tip of a scanning tunnelling microscope (STM) and atoms or molecules bound to a surface can be used to construct impressive nanostructures, such as the 'quantum corral'.

Researchers control chemical reactions one molecule at a time

Dec 14, 2004

Scientists at the University of California, Riverside showed that L. P. Hammett’s 1937 prediction of the strength of different acids is directly transferable to the activation of individual molecules on metal surfaces using ...

Recommended for you

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

Tough foam from tiny sheets

Jul 29, 2014

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Picky
not rated yet Nov 13, 2009
Did some-one get hyphen-happy? Or was the-re a form-atting iss-ue?
MyDimethyltryptamine
Nov 14, 2009
This comment has been removed by a moderator.