Unusual meteorite found by time-lapse camera observatory

Nov 05, 2009
Time-lapse image taken over one night of a fireball travelling across the sky. It was taken from a fireball camera network or observatory in Western Australia. © Phil Bland, Imperial College

(PhysOrg.com) -- An unusual meteorite with an interesting orbit has been tracked to the ground using a photographic observatory that records time-lapse images of fireballs traveling across the sky.

The network of cameras is in the Nullabor Desert in Western Australia. It allows scientists to track a fireball path, formed by a meteorite as it travels through Earth's atmosphere, and then work out where the meteorite comes to rest.

The fireball camera network project was set up by Dr Phil Bland from Imperial College London and scientific associate of the Natural History Museum, along with colleagues from Ondrejov Observatory in the Czech Republic, and the Western Australia Museum, in 2006. This is the first meteorite recovered using the network.

The cameras recorded the fireball that ultimately produced the meteorite in 2007, and the fragments that fell to Earth were named Bunburra Rockhole after a local landscape feature near to where they landed.

The meteorite was found within 100m of the predicted fall line. It was collected and samples were given to the Natural History Museum where mineral experts Dr Gretchen Benedix and Dr Kieren Howard helped examine and classify it. They produced data about the meteorite’s composition and the types of minerals within it.

Most meteorites found on Earth are believed to be fragments of asteroids - ancient rocks that formed during the creation of the about 4.56 billion years ago.

Using complex calculations, the team were able to work out the meteorite's path to Earth and its orbit, and from that, where in the solar system the meteorite most likely came from.

Unusual meteorite found by time-lapse camera observatory
The Bunburra Rockhole meteorite is made from an usual type of basaltic igneous rock © Phil Bland, Imperial College

The Bunburra meteorite is about the size of a cricket ball and is an unusual type of basaltic igneous rock. Most basaltic meteorites are thought to come from one asteroid. However, the composition of Bunburra Rockhole means that it comes from a different asteroid.

This means that the process required to form this type of rock was happening in more than one place in the early solar system.

‘It's vital to have a meteorite with information about where it comes from in the solar system,’ says Dr Benedix.

‘We've known for a long time that most meteorites are from the asteroid belt, but we don't know exactly where. This kind of information helps us fit one more piece in the puzzle of how the solar system formed and evolved.

‘The fact that this meteorite is compositionally unusual increases it's value even more. It helps us to uncover more information about the conditions of the early solar system.’

The team says that the meteorite had an unusual orbit. Using modeling techniques, it was determined that Bunburra Rockhole began as part of an asteroid in the innermost main asteroid belt between Mars and Jupiter.

Its orbit gradually evolved into one very similar to Earth's. Other meteorites for which data exist have orbits that take them into the main belt.

Dr Howard says, ‘I consider myself lucky to handle rocks from space when usually I only know that they come from the curators’ cupboard!

‘The chance to study a meteorite with a known orbit and source, so soon after if falls to Earth, is really exciting.’

Dr Bland concludes, 'It was amazing to find a that we could track back to its origin in the on our first expedition using our small trial network.

'We're cautiously optimistic that this find could be the first of many and if that happens, each find may give us more clues about how the solar system began.'

Provided by American Museum of Natural History (news : web)

Explore further: Red moon at night; stargazer's delight

add to favorites email to friend print save as pdf

Related Stories

Discovery of the source of the most common meteorites

Jul 10, 2008

Astronomy & Astrophysics is publishing the first discovery by T. Mothé-Diniz (Brazil) and D. Nesvorný (USA) of asteroids with a spectrum similar to that of ordinary chondrites, the meteoritic material that m ...

Unusual meteorite found in Antarctica

Sep 19, 2006

U.S. scientists say they recovered an unusual meteorite late last year in Antarctica -- a type of lunar meteorite seen only once before.

One-of-a-kind meteorite unveiled

Apr 22, 2006

The depths of space are much closer to home following the University of Alberta's acquisition of a meteorite that is the only one of its kind known to exist on Earth! What makes it so rare? The meteorite is 'pristine' – ...

University of Western Ontario cameras capture 'fireball'

Oct 24, 2008

For the second time this year, The University of Western Ontario Meteor Group has captured incredibly rare video footage of a meteor falling to Earth. The team of astronomers suspects the fireball dropped meteorites in a ...

Recommended for you

Astronauts to reveal sobering data on asteroid impacts

8 hours ago

This Earth Day, Tuesday, April 22, three former NASA astronauts will present new evidence that our planet has experienced many more large-scale asteroid impacts over the past decade than previously thought… ...

Rosetta instrument commissioning continues

9 hours ago

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

Astronaut salary

9 hours ago

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Red moon at night; stargazer's delight

Apr 16, 2014

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Nartoon
5 / 5 (1) Nov 06, 2009
This meteorite could just be a small chunk that broke off the bigger asteroid at some point millions of years ago.
OnSiteStudios
5 / 5 (1) Nov 07, 2009
That photo is not an example of time-lapse photography. It is called a long exposure. Time-lapse is when multiple photographs are recorded at intervals of time in order to 'speed up' events that take too long for the human eye to perceive.
Here is an example of a time-lapse film. It shows seven days of action and is compressed into four minutes of viewing time:
http://www.vimeo.com/6739275
yyz
not rated yet Nov 10, 2009
The geology of the Nullarbor Plain, its flat terrain making fallen meteorites stand out, is the perfect location for a meteor network such as this one. Glad to see some early payoff.

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...