Lung tissue generated from human embryonic stem cells

Nov 05, 2009

Scientists in Belgium have successfully differentiated human embryonic stem cells (hESC) into major cell types of lung epithelial tissue using a convenient air-liquid interface. The technique, published in BioMed Central's open access journal Respiratory Research, could provide an alternative to lung transplants for patients with lung injury due to chronic pulmonary disease and inherited genetic diseases such as cystic fibrosis.

Lindsey Van Haute and colleagues from the Department of Embryology and Genetics at the Free University of Brussels (Vrije Universiteit Brussel) demonstrated for the first time that hESC could be converted into epithelial-like cells in human models. Van Haute and colleagues assessed hESC differentiation using an air-liquid interface system that mimicks the conditions found in an adult trachea. Expression data of lung-specific biomarkers from quantitative real-time RT-PCR supported the differentiation into lung epithelial cells. Furthermore, the combination of these mRNA expression results, as well protein expression, secretion and localization showed the presence of the major cell types of lung epithelial tissue.

This study demonstrates that hESC can differentiate into lung epithelial-like tissue without specific growth factors or embryoid body formation. The air-liquid interface on a porous membrane combined with low serum is sufficient to prime the cells to form an airway epithelial-like tissue.

"Efforts will be made to further improve this novel culture protocol, trying to increase the number of differentiated cells or to guide the differentiation into particular cell types by adding certain growth factors to this system," says Van Haute. The team may start with fibroblast growth factors, which are important in the developing lung, to test whether their addition to the culture medium influences the differentiation pattern.

Van Haute continues, "hESC have the capacity to differentiate in vivo and in vitro into cells from all three germ lineages, making them particularly important in developmental biology, regenerative medicine and in vitro pharmacological studies. hESC lines carrying a monogenic disease affecting the lung, such as , are available. This novel technique can be used on these affected hESC lines and provide researchers with putatively clinically relevant tools to develop in vitro models for these diseases."

More information: Generation of epithelial-like tissue from human , Lindsey Van Haute, Gert De Block, Inge Liebaers, Karen Sermon and Martine De Rycke, Respiratory Research (in press), http://respiratory-research.com/

Source: BioMed Central (news : web)

Explore further: Diet affects men's and women's gut microbes differently

add to favorites email to friend print save as pdf

Related Stories

Skin-like tissue developed from human embryonic stem cells

Jul 21, 2009

Dental and tissue engineering researchers at Tufts University School of Dental Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts have harnessed the pluripotency of human embryonic stem cells (hESC) ...

Study sheds light on deadly lung disease

Apr 14, 2008

Systemic sclerosis (SSc), also known as scleroderma, is characterized by the formation of fibrosis, or scar tissue, on internal organs as well as the skin. Beyond its disfiguring symptoms, SSc is associated with a high rate ...

Recommended for you

Diet affects men's and women's gut microbes differently

23 minutes ago

The microbes living in the guts of males and females react differently to diet, even when the diets are identical, according to a study by scientists from The University of Texas at Austin and six other institutions published ...

Researchers explore what happens when heart cells fail

1 hour ago

Through a grant from the United States-Israel Binational Science Foundation, Biomedical Engineering Associate Professor Naomi Chesler will embark upon a new collaborative research project to better understand ...

Stem cells from nerves form teeth

3 hours ago

Researchers at Karolinska Institutet in Sweden have discovered that stem cells inside the soft tissues of the tooth come from an unexpected source, namely nerves. These findings are now being published in the journal Nature and co ...

User comments : 0