Experimental agent reduces breast cancer metastasis to bone

Nov 03, 2009

Researchers have reduced breast cancer metastasis to bone using an experimental agent to inhibit ROCK, a protein that was found to be over-expressed in metastatic breast cancer. In a study in mice, the team of researchers from Tufts University School of Medicine, the Sackler School of Graduate Biomedical Sciences at Tufts, and Tufts Medical Center report that inhibiting ROCK, or Rho-associated kinase, in the earliest stages of breast cancer decreased metastatic tumor mass in bone by 77 percent and overall frequency of metastasis by 36 percent. The results suggest that ROCK may be a target for new drug therapies to reduce breast cancer metastasis.

"While the primary tumor causes significant illness and requires treatment, metastasis accounts for over 90 percent of breast cancer-related deaths. There are no treatments to eradicate metastasis. Establishing ROCK's role in the spread of and identifying agents to inhibit ROCK brings us one step closer to an approach that might reduce metastasis in the future," said senior author Michael Rosenblatt, MD, professor of physiology and medicine at Tufts University School of Medicine and member of the cellular and molecular physiology program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts. Rosenblatt is also dean of Tufts University School of Medicine.

"We also found that using shRNA - short hairpin RNA - to knock down ROCK expression slowed metastasis. In order for cancer cells to migrate, an extensive transportation apparatus is required. ROCK directs the formation of this apparatus, but use of the ROCK inhibitor as well as shRNA rendered the cells' transportation mechanism ineffective, significantly reducing breast to bone," said first author Sijin Liu, PhD, research instructor and member of the Rosenblatt Laboratory at Tufts.

"This study also revealed that a specific microRNA cluster, 17 through 92, is associated with ROCK expression and breast cancer metastasis. The microRNA cluster responded to ROCK inhibition, which provides insight into the mechanism driving metastasis and is a finding that will be of particular interest to researchers focused on the role of microRNAs in gene expression," continued Liu.

Rosenblatt, Liu, and colleagues used luminescent imaging to observe ROCK's effect on breast cancer metastasis. The researchers found that inserting high levels of ROCK in non-metastatic cancer cells caused the cells to metastasize to several secondary sites, while cells with no ROCK exposure remained localized. The researchers then used an experimental agent (Y27632) or shRNA to reduce ROCK activity in seven mice with metastatic tumors, finding a significant decrease in metastasis to bone compared to six untreated mice.

Breast cancer is the second leading fatal cancer in women, and affects just under one in eight women in the United States. Bone is the most common site of breast cancer metastasis, affected three times more often than the lungs or liver.

Source: Tufts University, Health Sciences

Explore further: Dog's epigenome gives clues to human cancer

add to favorites email to friend print save as pdf

Related Stories

Genes set scene for metastasis

Apr 11, 2007

Biologists at Memorial Sloan-Kettering Cancer Center (MSKCC) have identified a set of genes expressed in human breast cancer cells that work together to remodel the network of blood vessels at the site of the primary tumor. ...

Two microRNAs promote spread of tumor cells

Jan 28, 2008

The more scientists learn about microRNAs – short strands of RNA that can interfere with normal gene activity – the more obvious it becomes how closely they are associated with cancer. In a new study, scientists at The ...

'Bridge' protein spurs deadliest stages of breast cancer

Feb 22, 2007

A protein known for its ability to "bridge" interactions between other cellular proteins may spur metastasis in breast cancer, the disease’s deadliest stage, a study from Burnham Institute for Medical Research has found.

Researchers find clue to stopping breast-cancer metastasis

Nov 17, 2008

If scientists knew exactly what a breast cancer cell needs to spread, then they could stop the most deadly part of the disease: metastasis. New research from the University of North Carolina at Chapel Hill School of Medicine ...

MicroRNA-mediated metastasis suppression

Oct 28, 2009

Metastases are responsible for over 90% of cancer deaths. In the upcoming issue of G&D, Dr. Robert Weinberg (MIT) and colleagues lend molecular insight into how microRNAs suppress tumor metastasis.

Recommended for you

Dog's epigenome gives clues to human cancer

1 hour ago

The bond between humans and dogs is strong and ancient. From being the protector of the first herds in a faithful pet, dogs and people share many aspects of life. The relationship between the two species ...

Study pinpoints microRNA tied to colon cancer tumor growth

17 hours ago

Researchers at the University of Minnesota have identified microRNAs that may cause colon polyps from turning cancerous. The finding could help physicians provide more specialized, and earlier, treatment before colon cancer ...

User comments : 0