Yeast in a shell: Coating individual living yeast cells with silicon dioxide

Nov 03, 2009

(PhysOrg.com) -- Our breakfast egg is a peculiarity of nature: a single cell protected by a thin mineral layer. Apart from a number of tiny radiolaria and diatoms, individual cells normally do not have a hard shell. Korean researchers have now developed a strategy for equipping individual cells of baker’s yeast, Saccharomyces cerevisiae, with a synthetic shell made of silicon dioxide. As the team led by Insung S. Choi reports in the journal Angewandte Chemie, the lifespan of these coated yeast cells is tripled, whilst their division is suppressed. The shell also protects the cells from unfavorable external conditions.

Whereas other research efforts previously succeeded in coating with a phosphate mineral layer, individual cells have not previously been encapsulated in . Inspired by the natural shell formation of diatoms, the researchers developed a biomimetic process to coat individual cells under mild physiological conditions. The surfaces of diatoms are covered with special long-chain molecules that contain many positively charged groups of atoms and initiate biomineralization.

The researchers imitated this process by equipping the cell membranes of the yeast cells with synthetic polymers, always alternating layers with many positive charges and layers with many negative charges -- a total of 21 layers. When the yeast cells that have been treated in this way are placed in a solution containing negatively charged silicic acid compounds, these dock onto the outermost positively charged layer of the yeast shell. There they mineralize to silicon dioxide and completely encapsulate the cells.

Genetically modified yeasts are used to produce important pharmaceutical agents. In molecular biological research, easily cultivated yeasts are often used for fundamental investigations of cellular processes and for the diagnosis of human diseases. The protection and improved shelf life possible because of the shell could enable new avenues of research. In addition, the shell could act as a scaffold for the introduction of modifications to the chemical and biological properties.

More information: Insung S. Choi, Biomimetic Encapsulation of Individual Cells with Silica, International Edition, doi: 10.1002/anie.200903010

Provided by Wiley (news : web)

Explore further: Researchers create designer 'barrel' proteins

add to favorites email to friend print save as pdf

Related Stories

Yeast in an Egg Shell

Mar 28, 2008

Nature’s eggshells have inspired Chinese researchers: A team led by Ruikang Tang at Zhejiang University have successfully equipped living yeast cells with an artificial mineral coating. As reported in the journal Angewandte Ch ...

Nano World: Nano helps keep cells alive

Jul 26, 2006

Encasing living cells in networks of silica and fatty layers only nanometers or billionths of a meter in size could help keep them alive longer for use in novel chemical factories or sensors, experts tell UPI's Nano World.

Coming Soon: Blood Vessels from a Test Tube?

Jun 04, 2007

Our tissues and organs consist of a complex, closely balanced assembly of different types of cells, extracellular matrix, and special signal-carrying molecules. The growth of such structures in the laboratory, perhaps for ...

Taking the stress off yeast produces better wine

Sep 09, 2009

Turning grape juice into wine is a stressful business for yeasts. Dr Agustin Aranda from the University of Valencia, Spain has identified the genes in yeast that enable it to respond to stress and is investigating ways to ...

Recommended for you

Amino acids key to new gold leaching process

9 hours ago

Curtin University scientists have developed a gold and copper extraction process using an amino acid–hydrogen peroxide system, which could provide an environmentally friendly and cheaper alternative to ...

Researchers create designer 'barrel' proteins

Oct 23, 2014

Proteins are long linear molecules that fold up to form well-defined 3D shapes. These 3D molecular architectures are essential for biological functions such as the elasticity of skin, the digestion of food, ...

User comments : 0