There's a speed limit to the pace of evolution, biologists say

Nov 02, 2009

Researchers at the University of Pennsylvania have developed a theoretical model that informs the understanding of evolution and determines how quickly an organism will evolve using a catalogue of "evolutionary speed limits." The model provides quantitative predictions for the speed of evolution on various "fitness landscapes," the dynamic and varied conditions under which bacteria, viruses and even humans adapt.

A major conclusion of the work is that for some organisms, possibly including humans, continued will not translate into ever-increasing fitness. Moreover, a population may accrue mutations at a constant rate -- a pattern long considered the hallmark of "neutral" or non-Darwinian evolution -- even when the mutations experience Darwinian selection.

While much is known about the qualitative aspects of evolutionary theory — that organisms mutate and these mutations are selected by the environment and are gradually absorbed by the entire population, very little is known about how, or how quickly, this is accomplished. Information on evolution between consecutive generations is hard to come by, and the lack of understanding has real-world implications. Public-health officials would have an easier time preparing targeted vaccinations, or combating drug resistance, if they understood the evolutionary speed limits on viruses and bacteria such as influenza and M. tuberculosis.

Penn researchers presented a theory of how the fitness of a population will increase over time, for a total of 14 types of underlying landscapes or "speed limits" that describe the consequences of available . These categories determine the speed and pattern of evolution, predicting how a population's overall fitness, and the number of accumulated beneficial mutations, are expected to increase over time.

Researchers compared the theory to the data from a two-decades study of E. coli to investigate how the evolves. Organisms of that simplicity and size reproduce more rapidly than larger species, providing 40,000 generations of data to study.

"We asked, quantitatively, how a population's fitness will increase over time as beneficial mutations accrue," said Joshua B. Plotkin, principal investigator and an assistant professor in the Department of Biology in Penn's School of Arts and Sciences. His research focuses on evolution at the molecular scale.

"This was an attempt to provide a theoretical framework for studying rates of molecular evolution," said first-author Sergey Kryazhimskiy, also of the Department of Biology. "We applied this theory to infer the underlying fitness landscape of bacteria, using data from a long-term bacterial experiment.".

In some theoretically conceivable landscapes, fitness levels are expected to increase exponentially forever because of an inexhaustible supply of beneficial mutations. But in more realistic landscapes the rate of adaptive substitutions (mutations that improve an organism's fitness) eventually lose steam, resulting in sub-linear fitness growth. In some of these landscapes, the fitness eventually levels out and the organism ceases to adapt, even though mutations may continue to accrue.

E. coli, for example, has been observed to increase its rate of cellular division by roughly 40 percent during the course of 40,000 generations. Initially, the bacterial fitness increased rapidly, but eventually the fitness leveled out. These data have allowed the research team to infer that early mutations, while conferring large beneficial effects, also diminish the beneficial effects of subsequent mutations.

According to the study, a population's fitness and substitution trajectories —t he mutations acquired to achieve higher fitness — depend not on the full distribution of fitness effects of available mutations but rather on the expected fixation probability and the expected fitness increment of mutations. This mathematical observation greatly simplifies the possible trajectories of evolution into 14 distinct categories.

Researchers demonstrated that linear substitution trajectories that signify a constant rate of accruing mutations, long considered the hallmark of neutral evolution, can arise even when mutations are strongly beneficial. The results provide a basis for understanding the dynamics of adaptation and for inferring properties of an organism's fitness landscape from long-term experimental data. Applying these methods to data from bacterial experiments allowed the researchers to characterize the evolutionary relationships among beneficial in the E. coli genome.

The study, appearing in the current issue of the journal Proceedings of the National Academy of Sciences, was performed by Plotkin and Kryazhimskiy along with Gašper Tkacik of the Department of Physics and Astronomy at Penn.

Source: University of Pennsylvania (news : web)

Explore further: A clear, molecular view of how human color vision evolved

add to favorites email to friend print save as pdf

Related Stories

Beyond a 'speed limit' on mutations, species risk extinction

Oct 01, 2007

Harvard University scientists have identified a virtual "speed limit" on the rate of molecular evolution in organisms, and the magic number appears to be 6 mutations per genome per generation -- a level beyond which species ...

Genetic differences influence aging rates in the wild

Dec 12, 2007

Long-lived, wild animals harbor genetic differences that influence how quickly they begin to show their age, according to the results of a long-term study reported online on December 13th in Current Biology, a Cell Press ...

Cancer found to be a moving target

Jun 10, 2009

Cancer is the result of Darwinian evolution among populations of cells, in which the fittest cells win the struggle for survival, while ultimately killing the person of whom they are a part.

Double trouble with insecticide-resistant mosquitoes

Apr 08, 2008

Mosquitoes harbouring two insecticide-resistance genes have been found to survive unexpectedly well in an insecticide-free environment where carrying such genes would normally expected to be a burden. As outlined in research ...

Recommended for you

Contrasting views of kin selection assessed

Dec 17, 2014

In an article to be published in the January issue of BioScience, two philosophers tackle one of the most divisive arguments in modern biology: the value of the theory of "kin selection."

Microbiome may have shaped early human populations

Dec 16, 2014

We humans have an exceptional age structure compared to other animals: Our children remain dependent on their parents for an unusually long period and our elderly live an extremely long time after they have ...

DNA sheds light on why largest lemurs disappeared

Dec 16, 2014

Ancient DNA extracted from the bones and teeth of giant lemurs that lived thousands of years ago in Madagascar may help explain why the giant lemurs went extinct. It also explains what factors make some surviving ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.