PhD student solves decade-long mystery of magnetism

Oct 27, 2009
Toby Perring and Andrew Walters at UCL Mathematical & Physical Sciences

( -- A PhD student from the London Centre for Nanotechnology has won a prize for solving a decade-long mystery central to understanding modern magnetic systems.

Andrew Walters has won the 2009 Marshall Stoneham Prize, a newly established prize awarded annually to an outstanding PhD thesis in the area of condensed matter and materials physics.

Mr Walters and colleagues from the Science and Technology Facilities Council and Brookhaven National Laboratory in New York have been studying magnetism in the cuprates, chemical compounds containing .

The study of superconductivity, where a material has absolutely no electrical resistance below a certain temperature, occupies an important place in today.

Since their discovery in the late 1980s, scientists have extensively studied the cuprates, which are high-temperature superconductors containing planes of copper and oxygen atoms.

In addition to their unusual electrical conducting properties, the electrons from the copper atoms have been shown to have unique which may be linked to the superconductivity.

However, for all the work done over the last twenty years, the location of these magnetic electrons in the planes of copper and oxygen atoms has been unclear.

Most studies have assumed that these electrons remain near the copper atoms, and are unaffected by the neighbouring oxygen atoms.

But Mr Walters and his colleagues’ experiments and analysis have revealed new information about the location of the magnetic electrons.

They discovered that the average position of the magnetic electrons is much further away from the copper atoms than had been previously thought, and in fact the chance of finding an electron in the region of an oxygen atom is far higher than anticipated.

This new understanding puts a question mark over a lot of the current understanding of magnetism in the cuprates, and may have important implications for the superconductivity in these materials.

Provided by University College London (news : web)

Explore further: Technique simplifies the creation of high-tech crystals

add to favorites email to friend print save as pdf

Related Stories

Puzzled Physicists Solve Decade-Long Discrepancies

Oct 09, 2009

( -- A team led by physicists at the Science and Technology Facilities Council (STFC) and Brookhaven National Laboratory (BNL) have resolved a decade-long puzzle that is set to have huge implications ...

Three-dimensional polymer with unusual magnetism

Nov 13, 2006

Up to now it has not been possible to fabricate magnets from organic materials, like for example plastics. Recently, however, experiments at the Forschungszentrum Dresden-Rossendorf (Germany) in collaboration with an international ...

Recommended for you

IHEP in China has ambitions for Higgs factory

16 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

17 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

18 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

The electric slide dance of DNA knots

22 hours ago

DNA has the nasty habit of getting tangled and forming knots. Scientists study these knots to understand their function and learn how to disentangle them (e.g. useful for gene sequencing techniques). Cristian ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 02, 2009
Alot of article with few facts. A hint of a possibility is not information.
not rated yet Nov 05, 2009
In Humphreys theory holes are magnetically paired by spin of electrons involved and superconductivity pairs march collectively along the channels, like trams on pairs of tramlines running between the blocks of houses. There is one hole on each tramline, according to this model, and the pairs of holes move down the channels, hopping from oxygen to oxygen via adjacent copper sites. The image of real hole stripes illustrates this situation clearly.
not rated yet Nov 09, 2009
Alexa; I can't find anything on "Humpherys Theory", got any sources?