Master regulator found for regenerating nerve fibers in live animals

Oct 25, 2009

Researchers at Children's Hospital Boston report that an enzyme known as Mst3b, previously identified in their lab, is essential for regenerating damaged axons (nerve fibers) in a live animal model, in both the peripheral and central nervous systems. Their findings, published online by Nature Neuroscience on October 25, suggest Mst3b - or agents that stimulate it - as a possible means of treating stroke, spinal cord damage and traumatic brain injury. Normally, neurons in the central nervous system (the brain and spinal cord) cannot regenerate injured nerve fibers, limiting people's ability to recover from brain or spinal cord injuries.

The study, led by Nina Irwin, PhD and Larry Benowitz, PhD, of the Laboratories for Neuroscience Research in Neurosurgery and the F.M. Kirby Neurobiology Center at Children's, builds on previous discoveries in the lab. In 2002, they showed that a naturally occurring small molecule, inosine, stimulates axon regeneration, later showing that it helps restore neurological functions in animal models of injury. In 2006, Benowitz and colleagues reported a previously unknown growth factor, oncomodulin, to have dramatic effects on axon growth.

Investigating the mechanisms of action of inosine and oncomodulin, Irwin and Benowitz discovered that both compounds activate Mst3b, an enzyme that appears to be a master regulator of a cell-signaling pathway controlling axon growth. Mst3b, a protein kinase, in turn activates signals that switch on the genes necessary for axons to grow.

Working with live rats whose optic nerve was damaged (a common model of injury), Irwin, Benowitz and colleagues show that in the absence of Mst3b, axons show very little regeneration, even in the presence of factors known to enhance axon growth. In cell cultures, axon growth increased when activated Mst3b was expressed in the neurons.

"All the growth factors we've tested - oncomodulin, inosine, brain-derived neurotropic factor, nerve growth factor - act through Mst3b," says Benowitz. "In fact, activating Mst3b by itself is enough to cause growth even if there are no growth factors around. In terms of basic understanding of nerve cells, this is a very exciting finding."

Further studies examining how Mst3b exerts this growth-promoting effect may open up new avenues for treating brain and , Benowitz says. While this study explains why growth factors work - because they stimulate Mst3b - it's not yet known whether Mst3b is the best stimulator of axon growth from a practical drug-development standpoint, he adds.

Irwin is now working on possible gene therapy approaches involving Mst3b. Activating Mst3b may help overcome some natural "brakes" in the cell-signaling system that prevent nerve regeneration under normal conditions.

Source: Children's Hospital Boston (news : web)

Explore further: Scientists discover brain's anti-distraction system

add to favorites email to friend print save as pdf

Related Stories

Researchers regenerate axons necessary for voluntary movement

Apr 06, 2009

For the first time, researchers have clearly shown regeneration of a critical type of nerve fiber that travels between the brain and the spinal cord and which is required for voluntary movement. The regeneration was accomplished ...

Finding the Right Connection after Spinal Cord Injury

Aug 02, 2009

In a major step in spinal cord injury research, scientists at the University of California, San Diego School of Medicine have demonstrated that regenerating axons can be guided to their correct targets and ...

The dormant potential of damaged nerve cells

Jul 13, 2009

(PhysOrg.com) -- Damaged nerve cells in a finger will regrow, but those in the spinal cord do not. Why the difference? Scientists at the Max Planck Institute for Neurobiology working with an international ...

Recommended for you

Advances made in improving error awareness in older people

18 hours ago

(Medical Xpress)—Neuroscientists at Trinity College Dublin have found that people in their 70s are on average less aware of mistakes they make than younger people. The findings may help us develop better methods for helping ...

User comments : 0

More news stories

Low Vitamin D may not be a culprit in menopause symptoms

A new study from the Women's Health Initiative (WHI) shows no significant connection between vitamin D levels and menopause symptoms. The study was published online today in Menopause, the journal of The North American Menopa ...

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...