Ethiopia's climate 27 million years ago had higher rainfall, warmer soil

Oct 22, 2009

Thirty million years ago, before Ethiopia's mountainous highlands split and the Great Rift Valley formed, the tropical zone had warmer soil temperatures, higher rainfall and different atmospheric circulation patterns than it does today, according to new research of fossil soils found in the central African nation.

Neil J. Tabor, associate professor of Earth Sciences at Southern Methodist University in Dallas and an expert in sedimentology and isotope geochemistry, calculated past climate using oxygen and hydrogen isotopes in minerals from fossil soils discovered in the highlands of northwest Ethiopia. The highlands represent the bulk of the mountains on the African continent.

Tabor's research describes a picture of the paleo landscape of Ethiopia that wasn't previously known because the fossil record for the tropics has not been well established. The fossils were discovered in the grass-covered agricultural region known as Chilga, which was a forest in prehistoric times. Tabor's research looked at fossils dating from 26.7 million to 32 million years ago.

Fossil plants and vertebrates in the Chilga Beds date from 26.7 million to 28.1 million years ago, Tabor says. From his examination, Tabor determined there was a lower and older layer of coal and underclay that was a poorly drained, swampy landscape dissected by well-drained Oxisol-forming uplands. A younger upper layer of the Chilga Beds consists of mudstones and sandstones in what was an open landscape dominated by braided, meandering fluvial stream systems.

Tabor is part of a multi-disciplinary team combining independent lines of evidence from various fossil and geochemical sources to reconstruct the prehistoric climate, landscape and ecosystems of Ethiopia, as well as Africa. The project is funded with a three-year, $322,000 grant from the National Science Foundation. The team includes paleoanthropologists, paleobotanists and vertebrate paleontologists from the University of Texas at Austin, Miami University, Southern Methodist University, the Fort Worth Museum of Science and History, Washington University and the University of Michigan.

Tabor presented the research in a topical session at the Oct. 18-21 annual meeting of the Geological Society of America.

Source: Southern Methodist University (news : web)

Explore further: Wave energy impact on harbour operations investigated

add to favorites email to friend print save as pdf

Related Stories

Early hominid first walked on two legs in the woods

Oct 08, 2009

Among the many surprises associated with the discovery of the oldest known, nearly complete skeleton of a hominid is the finding that this species took its first steps toward bipedalism not on the open, grassy ...

New hoofed mammal fossil found

Aug 09, 2006

A U.S. paleontologist has discovered the fossils of a new hoofed South American mammal that resembled a cross between a dog and a hare.

Earth's First Rainforest Unearthed

Apr 23, 2007

A spectacular fossilised forest has transformed our understanding of the ecology of the Earth’s first rainforests. It is 300 million years old.

A bumpy shift from ice house to greenhouse

Jan 04, 2007

The transition from an ice age to an ice-free planet 300 million years ago was highly unstable, marked by dips and rises in carbon dioxide, extreme swings in climate and drastic effects on tropical vegetation, according to ...

Recommended for you

Wave energy impact on harbour operations investigated

3 hours ago

Infragravity period oscillations—waves that occur between 25 and 300 seconds with a wavelength between 100m and 10km—can have an impact on berthing operations, depending on a harbour's geometry.

Huge waves measured for first time in Arctic Ocean

22 hours ago

As the climate warms and sea ice retreats, the North is changing. An ice-covered expanse now has a season of increasingly open water which is predicted to extend across the whole Arctic Ocean before the middle ...

User comments : 0