New material could efficiently power tiny generators

Oct 22, 2009 by Sandra Knisely

(PhysOrg.com) -- To power a very small device like a pacemaker or a transistor, you need an even smaller generator. The components that operate the generator are smaller yet, and the efficiency of those foundational components is critical to the performance of the overall device.

For his Ph.D. at the Georgia Institute of Technology, University of Wisconsin-Madison materials science and engineering assistant professor Xudong Wang was part of a team that developed a piezoelectric nanogenerator and experimented with a variety of materials to power it.

The team found that nanowires, which have six-sided, column-like crystals, could produce 10 nanowatts per square centimeter by converting mechanical energy into electricity. The mechanical energy could come from environmental sources as varied as wind, car engines, human breathing, blood flow, body movements, or acoustic and ultrasonic vibrations.

While the advance was exciting, the zinc oxide nanowires had a low efficiency rate, and now at UW-Madison, Wang is tackling this challenge by researching a new material that could make the nanogenerator more efficient and powerful. An optimized nanogenerator could power small devices with a wide range of applications, such as LEDs, MEMS, transistors and biomedical devices such as pacemakers, robots, sensors or sensor diodes.

Wang is developing that could produce nanowires with 10 times the electric potential of the original zinc oxide ones. The increase occurs because the crystal of a ferroelectric material is made of spatially unbalanced atoms that produce automatic, permanent polarization in the material. When Wang introduces strain inside this unbalanced crystal, the polarization is enhanced, creating a significant amount of electric potential.

Very little mechanical energy would be needed to power the new nanogenerator because even a small amount of displacement has a larger effect on than regular materials — a theory Wang intends to prove in his lab.

One challenge is fabricating the ferroelectric nanowires, which is a more complicated process than fabricating zinc oxide nanowires. To grow the ferroelectric nanowires, Wang uses a molten salt process. Molten sodium chloride acts as the reaction medium to assist the nanowires in self-assembling from precursors at around 1,500 degrees Fahrenheit. Each nanowire is 10,000 times smaller than a single human hair.

"We are currently investigating how much potential can be generated by such when they are deflected using atomic force microscopy," Wang says.

Wang's ultimate goal is to make a real nanogenerator capable of powering a variety of small devices. Since the generator would require such a small amount of power from sources that are continuously providing energy, it could serve essentially as an eternal battery.

Provided by University of Wisconsin-Madison (news : web)

Explore further: Protons fuel graphene prospects

add to favorites email to friend print save as pdf

Related Stories

Nanogenerators May Spark Miniature Machines (Update)

Apr 13, 2006

Researchers have developed a new technique for powering nanometer-scale devices without the need for bulky energy sources such as batteries. By converting mechanical energy from body movement, muscle stretching ...

'Nano-Piezotronics' -- New Class of Electronic Components

Mar 01, 2007

Researchers have taken advantage of the unique coupled semiconducting and piezoelectric properties of zinc oxide nanowires to create a new class of electronic components and devices that could provide the foundation ...

Cheaper LEDs from breakthrough in ZnO nanowire research

Jan 03, 2007

Engineers at UC San Diego have synthesized a long-sought semiconducting material that may pave the way for an inexpensive new kind of light emitting diode (LED) that could compete with today's widely used gallium ...

Recommended for you

Protons fuel graphene prospects

14 hours ago

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

Cooling with the coldest matter in the world

Nov 24, 2014

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree ...

Magnetic fields and lasers elicit graphene secret

Nov 24, 2014

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have studied the dynamics of electrons from the "wonder material" graphene in a magnetic field for the first time. This led to the discovery of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.