Is Your Microrobot Up for the (NIST) Challenge?

Oct 20, 2009
A microrobot used at the RoboCup 2009 nanosoccer competition by the team from Switzerland's ETH Zurich is compared in size to the head of a fruit fly. The robot, which is operated under a microscope, is 300 micrometers in length or slightly larger than a dust mite. Credit: ETH Zurich

(PhysOrg.com) -- The scientists and engineers who introduced the world to tiny robots demonstrating soccer skills are creating the next level of friendly competition designed to advance microrobotics -- the field devoted to the construction and operations of useful robots whose dimensions are measured in micrometers.

The National Institute of Standards and Technology, in collaboration with IEEE, is inviting university and collegiate student teams currently engaged in microrobotic, microelectronic or MicroElectroMechanical Systems (MEMS) research to participate in the 2010 NIST Mobile Microrobotics Challenge. The competition will be held as part of the IEEE International Conference on Robotics and Automation in May 2010 in Anchorage, Alaska.

Viewed under a microscope, the microbots are operated by remote control and move in response to changing magnetic fields or electrical signals transmitted across a microchip playing field. The bots are a few tens of micrometers to a few hundred micrometers long, but their masses can be just a few nanograms (billionths of a gram). They are manufactured from materials such as aluminum, nickel, gold, silicon and chromium.

Like the NIST-coordinated "nanosoccer" events at the 2007 and 2009 RoboCup competitions, the Mobile Microrobotics Challenge will pit tiny robotic contestants against each other in three tests: (1) a two-millimeter dash in which microrobots sprint across a distance equal to the diameter of a pin head; (2) a microassembly task where the competitors must insert pegs into designated holes; and (3) a freestyle competition where each team chooses a task for its that emphasizes one or more abilities from among system reliability, level of autonomy, power management and task complexity.

These events are designed to "road test" agility, maneuverability, response to computer control and the ability to move objects—all skills that future industrial microbots will need for tasks such as microsurgery within the human body or the manufacture of tiny components for microscopic electronic devices.

NIST is organizing the 2010 Mobile Microrobotics Challenge with the IEEE Robotics and Automation Society. NIST's goal in coordinating competitions between the world's smallest robots is to show the feasibility and accessibility of technologies for fabricating MEMS, which are tiny mechanical devices built onto semiconductor chips. The contests also drive innovation in this new field of robotics by inspiring young scientists and engineers to become involved.

To apply for the NIST Mobile Microrobotics Challenge, teams must submit a proposal by Dec. 31, 2009, by electronic mail to microrobotics2010(at)nist.gov, or by standard mail to: NIST Microrobotics Challenge 2010, c/o Craig McGray, NIST, 100 Bureau Dr., MS 8120, Gaithersburg, MD 20899-8120. Proposals must include: a roster of individuals contributing to the team; contact information for the team leader; a list of the facilities available for fabrication, operation and characterization of microrobots; an overview of the design; an overview of the intended capabilities of the microrobot; and an overview of the fabrication process to be used.

Provided by National Institute of Standards and Technology (news : web)

Explore further: Researchers use passive UHF RFID tags to detect how people interact with objects

Related Stories

Nanosoccer debuts at RoboCup 2007

Jun 29, 2007

Imagine a mechanical Pelé or David Beckham six times smaller than an amoeba playing with a “soccer ball” no wider than a human hair on a field that can fit on a grain of rice. Purely science fiction? ...

Three new standards for MEMS devices

Jul 16, 2004

Researchers at the National Institute of Standards and Technology (NIST), along with their colleagues at several companies, are completing experiments that validate new standards aimed at improving emerging new microelectromechanical ...

Novel Zigzag Shape Gives Sensors Magnetic Appeal

Jan 05, 2005

Scientists at the National Institute of Standards and Technology (NIST) have designed tiny magnetic sensors in a "zigzag" shape that are simpler in design and likely will be cheaper to make than conventional ...

Atlanta gets ready for RoboCup 2007

May 10, 2007

Georgia Tech will be the site of this year's RoboCup competition, with approximately 2,000 students and faculty from 20 nations participating.

Recommended for you

Intellectual property in 3D printing

Apr 16, 2015

The implications of intellectual property in 3D printing have been outlined in two documents created for the UK government by Bournemouth University's Dinusha Mendis and Davide Secchi, and Phil Reeves of Econolyst Ltd.

World-record electric motor for aircraft

Apr 16, 2015

Siemens researchers have developed a new type of electric motor that, with a weight of just 50 kilograms, delivers a continuous output of about 260 kilowatts – five times more than comparable drive systems. ...

Space open for business, says Electron launch system CEO

Apr 15, 2015

Space, like business, is all about time and money, said Peter Beck, CEO of Rocket Lab, a US company with a New Zealand subsidiary. The problem, he added, is that, in cost and time, space has remained an incredibly ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.