Arctic lake sediments show warming, unique ecological changes in recent decades

Oct 19, 2009
A University of Colorado at Boulder-led analysis of a 200,000 year-old sediment core from a Baffin Island lake indicates warming temperatures in the Arctic due to human activity are overriding a natural cooling trend in the region. Credit: Photo by Jason Briner, University at Buffalo

An analysis of sediment cores indicates that biological and chemical changes occurring at a remote Arctic lake are unprecedented over the past 200,000 years and likely are the result of human-caused climate change, according to a new study led by the University of Colorado at Boulder.

While environmental changes at the over the past millennia have been shown to be tightly linked with natural causes of climate change -- like periodic, well-understood wobbles in Earth's orbit -- changes seen in the sediment cores since about 1950 indicate expected climate cooling is being overridden by human activity like greenhouse gas emissions. The research team reconstructed past climate and environmental changes at the lake on Baffin Island using indicators that included algae, fossil insects and geochemistry preserved in sediment cores that extend back 200,000 years.

"The past few decades have been unique in the past 200,000 years in terms of the changes we see in the biology and chemistry recorded in the cores," said lead study author Yarrow Axford of CU-Boulder's Institute of and Alpine Research. "We see clear evidence for warming in one of the most remote places on Earth at a time when the Arctic should be cooling because of natural processes."

The study was published Oct. 19 in the . The study included researchers from CU-Boulder, the State University of New York's University at Buffalo, the University of Alberta, the University of Massachusetts and Queen's University in Kingston, Ontario.

The sediment cores were extracted from the bottom of a roughly 100-acre, 30-foot-deep lake near the village of Clyde River on the east coast of Baffin Island, which is several hundred miles west of Greenland. The lake sediment cores go back in time 80,000 years beyond the oldest reliable ice cores from Greenland and capture the environmental conditions of two previous ice ages and three interglacial periods.

The sediment cores showed that several types of mosquito-like midges that flourish in very cold climates have been abundant at the lake for the past several thousand years. But the cold-adapted midge species abruptly began declining in about 1950, matching their lowest abundances of the last 200,000 years. Two of the midge species adapted to the coldest temperatures have completely disappeared from the lake region, said Axford.

In addition, a species of diatom, a lake algae that was relatively rare at the site before the 20th century, has undergone unprecedented increases in recent decades, possibly in response to declining ice cover on the Baffin Island lake.

This is a scanning electron micrograph image of an Aulacoseira diatom, preserved in the sediments of Lake CF8 on Baffin Island, Arctic Canada. Credit: Cheryl Wilson and Alexander Wolfe

"Our results show that the human footprint is overpowering long-standing natural processes even in remote Arctic regions," said co-author John Smol of Queen's University. "This historical record shows that we are dramatically affecting the ecosystems on which we depend."

The ancient lake sediment cores are the oldest ever recovered from glaciated parts of Canada or Greenland. Massive ice sheets during ice ages generally scour the underlying bedrock and remove previous sediments.

"What is unique about these sediment cores is that even though glaciers covered this lake, for various reasons they did not erode it," said study co-author Jason Briner of the University at Buffalo. The result is that we have a really long sequence of sediment that has survived Arctic glaciations."

Axford emphasized the multiyear research project required expertise from each of the five institutions involved in the PNAS study. "This was a team effort all the way around, and each of the institutions has a unique set of skills that allowed us to carry out this study," she said. "We needed people who understood algae, insects, glaciers and geochemistry, not to mention how to drive snowmobiles and extract the cores."

The study was funded by the National Science Foundation, the Natural Sciences and Engineering Research Council of Canada and the Geological Society of America.

A study published in Science magazine last month that involved CU-Boulder researchers and reconstructed past temperatures in the Arctic using ice cores, tree rings and lake sediments concluded that recent warming around the Arctic is overriding a cooling trend caused by Earth's periodic wobble. Earth is now about 0.6 million miles further from the sun during the Northern Hemisphere summer solstice than it was in 1 B.C. -- a trend that has caused overall cooling in the Arctic until recently.

Source: University of Colorado at Boulder (news : web)

Explore further: Magnitude-7.2 earthquake shakes Mexican capital

add to favorites email to friend print save as pdf

Related Stories

Small Organisms, Great Proxies

Oct 23, 2006

The present and past compositions of communities of single-celled algae in several Canadian lakes and their relationship to the known climate record suggest that these organisms and the lakes they reside in ...

Recommended for you

Magnitude-7.2 earthquake shakes Mexican capital

Apr 18, 2014

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

GrayMouser
5 / 5 (1) Oct 19, 2009
2 points:
1) You notice they talk about the climate since 1950. The Arctic was warmer in the 1930s to 1940s time frame.
2) They talk about a natural cooling trend. We've been on a (generally) warming trend since the end of the last ice age. Unless we passing in to a cooling trend unforeseen by the IPCC climate models, we still have a few more degrees of warming to go before the next ice age.
GrayMouser
not rated yet Oct 20, 2009
But the cold-adapted midge species abruptly began declining in about 1950, matching their lowest abundances of the last 200,000 years.

1950? As someone else in another blog noted, this was during the time DDT was being used (and over-used). They also noted that DDT and it's breakdown products are transported from warmer to colder climates.

http://wattsupwit...for-ddt/

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...