Making monster waves

Oct 19, 2009
Under the right conditions, colliding waves can add to create a rogue wave that's larger than the sum of its parts. Credit: N. Akhmediev, J. M. Soto-Crespo and A. Ankiewicz

Rogue waves -- giant waves that spring up suddenly and tower over the seas around them—have inspired physicists to look for an analogue in light. These high-intensity pulses can cross large distances without losing information. Now a team of physicists have identified one set of conditions that produces optical rogue waves. Their findings are reported in Physical Review A and highlighted with in the October 19 issue of Physics.

Rogue waves were thought to be a sailor's tall tale until an 85-foot wave broke over an oil platform in the North Sea in 1995. Since then, scientists have tried to understand how such outsized waves arise from the erratic interactions of smaller waves on a choppy sea, with an eye toward creating them on purpose in the form of light traveling in an .

While versions of quantum mechanical equations describe how optical rogue waves evolve, it's still difficult to pinpoint the conditions necessary to get them started. Now Nail Akhmediev of the Australian National University and his team have identified one possibility using theory—breathers, or small peaks that appear suddenly in one spot and disappear almost immediately, could seed rogue waves.

Akhmediev's team found that two or three breathers, if they collide in exactly the right place at the right time, form an optical rogue wave. The researchers say the effect could be seen in water waves in a long, narrow tank. Their findings increase scientists' understanding of how to cook up optical rogue waves for communications applications.

More information: How to excite a rogue wave, N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, Phys. Rev. A 80, 043818 (2009) - Published October 19, 2009, Download PDF (free)

Source: American Physical Society

Explore further: Neutrino trident production may offer powerful probe of new physics

add to favorites email to friend print save as pdf

Related Stories

Researchers capture optical 'rogue waves'

Dec 12, 2007

Maritime folklore tells tales of giant "rogue waves" that can appear and disappear without warning in the open ocean. Also known as "freak waves," these ominous monsters have been described by mariners for ages and have even ...

Small waves can produce monster waves

Aug 10, 2006

Normal waves can unexpectedly turn into waves the size of a ten-story building. What’s more, these monster waves arise many times more rapidly than was previously thought. This has been shown by researchers at Umea University ...

New research sheds light on freak wave hot spots

Aug 05, 2009

Stories of ships mysteriously sent to watery graves by sudden, giant waves have long puzzled scientists and sailors. New research by San Francisco State professor Tim Janssen suggests that changes in water depth and currents, ...

Recommended for you

And so they beat on, flagella against the cantilever

12 hours ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

15 hours ago

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

17 hours ago

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 0