Pumping energy to nanocrystals from a quantum well

Jun 10, 2004
Pumping Energy to Nanocrystal

LOS ALAMOS, N.M., June 10, 2004 -- University of California scientists working at Los Alamos National Laboratory with a colleague from Sandia National Laboratories have developed a new method for exciting light emission from nanocrystal quantum dots. The discovery provides a way to supply energy to quantum dots without wires, and paves the way for a potentially wider use of tunable nanocrystalline materials in a variety of novel light-emitting technologies ranging from electronic displays to solid-state lighting and electrically pumped nanoscale lasers.

In a paper published in the today's issue of the scientific journal Nature, Los Alamos Chemistry Division scientist Victor Klimov and his colleagues describe their method for using non-contact, non-radiative energy transfer from a quantum well to produce light from an adjacent layer of nanocrystals. A quantum well is a semiconductor structure in which an electron is sandwiched between two barriers so that its motion is confined to two dimensions. In a real-life device, the quantum well would be pumped electrically in the same way a common quantum-well light-emitting diode is pumped.

According to Klimov, "The transfer of energy is fast enough to compete with exciton recombination in the quantum well, and that allows us to "move" more than 50 percent of the excitons to adjacent quantum dots. The recombination of these transferred excitons leads to emission of light with color that can be controlled by quantum dot size. The high efficiency of energy transfer in combination with the exceptional luminescent properties of nanocrystal quantum dots make hybrid quantum-well/nanocrystal devices feasible as efficient sources of any color light -- or even white light."

In addition to Klimov, project scientists include Marc Achermann, Melissa Petruska, Simon Kos and Darryl Smith from Los Alamos, along with Daniel Koleske from Sandia National Laboratories.

Quantum dot research at Los Alamos has led to a number of innovations over the past several years, including news ways to observe and manipulate nanodots and methods for making semiconductor nanocrystals respond to photons by producing multiple electrons as a result of impact ionization (www.lanl.gov/orgs/pa/newsbulle… 4/05/03/text02.shtml). That innovation has potential applications in a new generation of solar cells that would produce as much as 35 percent more electrical output than current solar cells.

The nanocrystal quantum dot research is funded by DOE's Office of Basics Energy Sciences and by the Los Alamos Laboratory-Directed Research and Development (LDRD) program. LDRD funds basic and applied research and development focusing on employee-initiated creative proposals selected at the discretion of the Laboratory director.

Additional information on Los Alamos quantum dot research is available at quantumdot.lanl.gov/ online.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA's Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

The original news release is available here.

Explore further: Understanding the source of extra-large capacities in promising Li-ion battery electrodes

add to favorites email to friend print save as pdf

Related Stories

Researchers speculate on computers of the future

May 28, 2014

Computing experts at Sandia National Laboratories have launched an effort to help discover what computers of the future might look like, from next-generation supercomputers to systems that learn on their ...

Shiny quantum dots brighten future of solar cells

Apr 14, 2014

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

Nontoxic quantum dot research improves solar cells

Dec 11, 2013

Solar cells made with low-cost, nontoxic copper-based quantum dots can achieve unprecedented longevity and efficiency, according to a study by Los Alamos National Laboratory and Sharp Corporation.

Recommended for you

Tough foam from tiny sheets

1 hour ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0